Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Рабочий процесс в химических ракетных двигателях
3.1. Аэрогазодинамический нагрев в полёте При движении газа с гиперзвуковыми скоростями М>5 на процесс теплообмена существенное влияние оказывают явления диссоциации, рекомбинации и ионизации. Диссоциация - процесс разложения молекулярных соединений и атомов на их составляющие. Процесс сопровождается значительным поглощением тепла. Рекомбинация - процесс обратный диссоциации; происходит с выделением тепла. Существенная интенсификация данного процесса наблюдается при наличии катализатора, в качестве которого можно рассматривать поверхность летательного аппарата (ЛА). Ионизация - процесс отрыва свободных электронов от атомов. При М<20 ионизируется менее 1% воздуха. Поэтому при указанных режимах полета влияние ионизации на теплообмен можно не учитывать. В случае исследование теплообмена между поверхностью ЛА и газовым потоком при М<20 могут быть использованы зависимости, полученные в курсе «Термодинамика газовых потоков», с учетом влияния рассмотренных процессов на теплофизические свойства окружающей среды. При движении ЛА с космическими или околокосмическими скоростями в сильно разреженных слоях атмосферы протяжённость свободного пробега молекулы соизмерима, а в некоторых случаях превышает протяжённость летательного аппарата. Такая зона полета называется областью свободномолекулярного потока. При этом у поверхности ЛА отсутствует пограничный слой и математические зависимости полученные в курсе «Термодинамика газовых потоков», становятся не применимы. При полёте в области свободно молекулярного потока определяющим является критерий Кнудсена: где: М и Re - критерии Маха и Рейнольдса, соответственно; к - показатель адиабаты. В области свободномолекулярного потока величина критерия Кнудсена Кn >10. При 0,1>Кn>0,01 у поверхности ЛА образуется тонкий пограничный слой скользящий вдоль неё, в котором наблюдается резкое изменение параметров потока. Процесс соударения между потоком и поверхностью ЛА характеризуется коэффициентом аккомодации А. Его величина зависит от параметров потока и состояния поверхности; характеризует относительную энергию, передаваемую от молекулы к поверхности ЛА при их соударении. При проведении технических расчетов величина А принимается равной 0,9. Процесс теплообмена в области свободно молекулярного потока с достаточной степенью точности характеризуется уравнением: где: - характеризует отношение скорости полёта ЛА к возможной скорости - критерий Прандтля. 3.2. Реакции химически активных газов Процессы расширения газов в значительной степени зависят от температуры и химического состава этих газов. С этой точки зрения все газы можно разделить на две группы: реагирующие (активные) и не реагирующие (пассивные). Активный газ — это газ, в котором при расширении происходят те или иные химические реакции; пассивный — расширяющийся без сопровождения химическими реакциями. Обычно, химические реакции, происходящие в газах при их расширении, отрицательно влияют на параметры термодинамического процесса и двигательной установки в целом. К таким реакциям относятся диссоциация, конденсация и ионизация. Так как диссоциация (процесс разложения молекулярных соединений на составляющие элементы) протекает с поглощением большого количества тепла, то это приводит к снижению температуры потока, то есть уменьшению его общей энергетики, а, следовательно, к ухудшению основных параметров двигателя. При расширении газового потока происходит снижение его температуры, а, следовательно, возможно явление конденсации — частичный переход рабочего тела из газообразного состояния в жидкое. Это отрицательно влияет на характеристики двигательной установки, уменьшая совершаемую газом полезную работу. Наглядное представление возникновения потерь от конденсации показано на рабочей диаграмме, рис.10.
Рис. 10 Ионизация — процесс отрыва электронов с внешних орбит электронейтральных атомов. Возникает при больших скоростях газового потока и обтекании им тел. Ионизация вызывает появление на выходе из сопла электрозаряженных частиц, вследствие чего наблюдается снижение тяги из-за взаи- моотталкивания одноимённо заряженных ионов рабочего тела. Кроме того, в процессе эксплуатации корпус летательного аппарата приобретает высокий электрический потенциал, что может вызвать электрический разряд между корпусом этого ЛА и другими электронейтральными или противоположно заряженными телами. При этом могут образоваться мощные кратковременные дуговые разряды, порой приводящие к серьёзным последствиям. Даже просто нахождение корпуса ЛА под высоким электрическим потенциалом уже может быть небезопасно для экипажа и приборов. Поэтому в случае процесса ионизации необходимо применять специальные устройства — нейтрализаторы, которые усложняют конструкцию двигателя и увеличивают его массу. 3.3. Потери в химических ракетных двигателях Рассмотрим идеальный ABCD и реальный abcd циклы РД в рабочей P-V диаграмме, рис. 11. Рис.11 АВ - изохорический процесс сжатия компонентов топлива в магистралях и турбонасосном агрегате (ТНА); ВС - изобарный процесс с подводом тепла Qi; горение топлива в камере его рания; CD - адиабатический процесс расширения газа в канале сопла; DA - изобарный процесс с отводом тепла Q2, происходящий за пределами двигателя; Площади ABCD и abсd - работы реального и идеального циклов РД, соответственно; Площадь аАВв - потери на сжатие; Площадь ЬСс - потери в камере сгорания; Площадь CDdc - потери в канале сопла; Потери в камере обусловлены: а) диссоциацией; б) трением газа о стенки камеры; в) неполнотой сгорания топлива; г) разгоном газового потока по тракту камеры. Снижение потерь, обусловленных процессом диссоциации, может осуществляться путем: а) использования топлив, не склонных к процессу диссоциации; б) увеличения давления в камере сгорания до 300МПа. а) конденсацией; б) трением потока о стенки сопла; в) непараллельностью течения потока относительно оси камеры; г) неадиабатичностью процесса. 3.4. Скорость истечения газов из сопла ракетного двигателя Из теории газового потока известно, что для каждого поперечного сечения канала при установившемся режиме течения выполняется условие: сумма энтальпии i газового потока и его кинетической энергии Ек остается величиной постоянной.
Степень расширения газа в канале сопла равна:
Термический КПД:
Коэффициент тяги: где: К - безразмерный коэффициент тяги, характеризующий увеличение силы тяги за счёт расширяющейся части сопла; B=f(k) где: - относительная степень расширения сопла. 3.5. Оценка эффективности процессов в химических ракетных двигателях Для оценки качества работы ракетных двигателей используются энергетические коэффициенты полезного действия (к.п.д.) и импульсные коэффициенты потерь Энергетические к.п.д. г\ - учитывают совершенство процесса преобразования теплоты в работу, а импульсные коэффициенты потерь - потери энергии в элементах камеры ракетного двигателя.
где L ц - работа, совершаемая ракетным двигателем за цикл (эквивалентна площади abcd на рабочей P-V диаграмме, см. рис. 11). Нраб - теплота, выделяемая двигателем за цикл. где - энергетический к.п.д. импульса давления; - энергетический к.п.д. в канале сопла; - термический к.п.д. 2.Импульсный коэффициент потерь в камере сгорания: Индексы «и» и «д» соответствуют идеальным и действительным значениям параметра. Принято считать, что ; , тогда 3.Импульсный коэффициент потерь в канале сопла: где: Кр - коэффициент тяги; Нижний предел изменения величины соответствует ДУ с малыми тягами, а верхний - с большими тягами. 4. Импульсный коэффициент потерь удельного импульса: Date: 2015-05-05; view: 818; Нарушение авторских прав |