Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Энтропия и вероятность. Формула Больцмана





Второе начало термодинамики является фундаментальным законом природы. Оно охватывает самый широкий круг природных явлений и указывает направление, в котором самопроизвольно протекают термодинамические процессы.

Второе начало термодинамики, как и первое, имеет несколько формулировок.

Невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, полностью в работу.

Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Эти формулировки показывают, что тепловые процессы являются необратимыми. Мерой необратимости процесса, мерой хаотичности является энтропия.

К определению энтропии S можно прийти на основе анализа работы тепловых машин. Если система получает тепло (Q=0) или отдает тепло (Q<0), то состояние ее меняется. Тогда, при изменении состояния системы, можно найти не саму энтропию, а только ее изменение, т. е. ∆S=∆Q/T Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1/T1 и ∆S2=Q2/T2

 

Формула ∆S=∆Q/T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Энтропией называется термодинамическая величина, изменение которой в системе пропорционально ее тепловой энергии, деленной на абсолютную температуру. Для любого процесса можно найти бесконечно малое изменение энтропии, т. е. ее дифференциал dS=δQ/T

 

где δQ - элементарная теплота В интегральной форме для любого процесса изменение энтропии равно

Найдем изменение энтропии за один цикл для тепловой машины. Из неравенства следует, что ∆S2≥∆S1. Полное изменение энтропии за цикл больше или равно нулю ∆S=∆S2-∆S1≥0

Знак равенства ΔS = 0 относится к обратимым процессам, которые являются бесконечно медленными процессами.

Знак неравенства ΔS > 0 относится к необратимым процессам. В реальных системах все процессы необратимы. Например, расширение газа, выравнивание температуры.



Таким образом, второе начало термодинамики формулируется и как закон возрастания энтропии. Во всех необратимых процессах в замкнутой системе энтропия всегда возрастает. Возрастание энтропии сопровождается выравниванием температуры или плотности газа. Это можно связать с порядком и беспорядком. Под порядком будем понимать сосредоточение частиц или энергии в определенном месте пространства, а под беспорядком (хаосом) - равномерное распределение их во всем объеме. Тогда возрастание энтропии при совершающихся без внешних воздействий необратимых процессах отражает природное стремление систем переходить от состояния более упорядоченного в состояние менее упорядоченное. Этот процесс сопровождается рассеянием (или диссипацией) энергии. Второе начало термодинамики определяет направленность тепловых процессов в изолированных системах, они всегда протекают в сторону роста энтропии, в сторону увеличения беспорядка. Возникновение упорядоченных структур возможно только в незамкнутых, т. е. в открытых системах. Открытой системой называется система, которая обменивается энергией и веществом с окружающей средой. В открытых системах энтропия может как возрастать, так и убывать в зависимости от знака Q/T.

Строго доказано, что в открытых системах, находящихся в неравновесном состоянии, при определенных условиях из хаоса может возникать порядок. Процесс возникновения из хаоса упорядоченных структур называется самоорганизацией. Процессы самоорганизации являются общими для живой и неживой природы.

Переход к статистическому весу позволяет записать выражение для энтропии в следующем виде:

 

S=klnG Эта формула носит название формулы Больцмана. Она позволяет рассчитать статистическую энтропию системы.

Из этой формулы следует, что энтропия термодинамической системы со статистическим весом равным единице, когда все частицы системы находятся в одинаковых состояниях, равна нулю. А в состоянии с максимальным статистическим весом энтропия также принимает максимальное значение.

Для статистической энтропии выполняется требование аддитивности. Если система может быть разделена на две не взаимодействующие подсистемы, статистические веса которых соответственно равны G1и G2, то её статистический вес G вычисляется как произведение весов подсистем: G=G1G2. При этом энтропия в соответствии с формулой равна: S=klnG=kln(G1G2)=klnG1+klnG2 или S=S1+S2 Следовательно, статистическая энтропия макроскопической системы, состоящей из не взаимодействующих подсистем, равна сумме энтропий этих подсистем.

 

Дополнительные вопросы








Date: 2015-05-04; view: 775; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию