Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Способы задания множеств
Обсудив особенности употребления логической символики, вернемся к рассмотрению множеств.
Два множества
Рассмотрим способы задания конкретных множеств. Для конечного множества, число элементов которого относительно невелико, может быть использован способ непосредственного перечисления элементов. Элементы конечного множества перечисляют в фигурных скобках в произвольном фиксированном порядке
В общем случае для конечного множества используют форму записи
Однако способ задания множества путем непосредственного перечисления его элементов применим в весьма узком диапазоне конечных множеств. Наиболее общим способом задания конкретных множеств является указание некоторого свойства, которым должны обладать все элементы описываемого множества, и только они.
Эта идея реализуется следующим образом. Пусть переменное
Предикат
Множество, заданное через характеристический предикат, записывается в следующей форме:
Например,
Термин "коллективизирующее свойство" мотивирован тем, что это свойство позволяет собрать разрозненные элементы в единое целое. Так, свойство, определяющее множество
G = {х: х есть студент 2-го курса специальности ИУ5 МГТУ им. Баумана, поступивший в 1999 г.},
Если мы вернемся к канторовскому определению множества, то характеристический предикат множества и есть тот закон, посредством которого совокупность элементов соединяется в единое целое. Предикат, задающий коллективизирующее свойство, может быть тождественно ложным. Множество, определенное таким образом, не будет иметь ни одного элемента. Его называют пустым множеством и обозначают
В противоположность этому тождественно истинный характеристический предикат задает универсальное множество.
Обратим внимание на то, что не каждый предикат выражает какое-то коллективизирующее свойство.
Замечание 1.1. Конкретное содержание понятия универсального множества определяется тем конкретным контекстом, в котором мы применяем теоретико-множественные идеи. Например, если мы занимаемся только различными числовыми множествами, то в качестве универсального может фигурировать множество Date: 2015-11-15; view: 503; Нарушение авторских прав |