Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Рождение метода Монте-Карло





Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Случайные величины использовались для решения различных прикладных задач достаточно давно. Примером может служить способ определения числа Пи, который был предложен Бюффоном3 еще в 1777 году. Суть метода была в бросании иглы длиной L на плоскость, расчерченную параллельными прямыми, расположенными на расстоянии rдруг от друга (Рис. 2.3).

Рис. 2.3. Метод Бюффона

Вероятность того, что отрезок (игла) пересечет прямую, связана с числом Пи:

,

Где А – расстояние от начала иглы до ближайшей к ней прямой; – угол иглы относительно прямых.

Просто взяв этот интеграл:

(при условии, что ), и подсчитав долю отрезков (игл), пересекающих прямые, можно приближенно определить число Пи. При увеличении количества попыток точность получаемого результата будет увеличиваться.

Другой пример. Не секрет, что вероятность появления орла или решки при подбрасывании монеты равна 0,5. Определить ее экспериментально пытались различные исследователи. Не имея в своем распоряжении вычислительной техники, они ставили эксперимент «в лоб», много раз подбрасывая монету. Результаты экспериментов приведены в таблице 2.1. [7]

Таблица 2.1. Результаты эксперимента по подбрасыванию монеты

Результаты эксперимента по подбрасыванию монеты
Исследователь Число подбрасываний Вероятность
Жорж Бюффон 0,507
Огастес де Морган 0,5005
Уильям Джевонс 0,5068
Вс. Романовский 0,4923
Карл Пирсон 0,5005
Уильям Феллер 0,4979

Создание математического аппарата стохастических методов началось в конце XIX века. В 1899 году лорд Релей показал, что одномерное случайное блуждание на бесконечной решётке может давать приближенное решение параболического дифференциального уравнения. А.Н. Колмогоров в 1931 году дал большой толчок развитию стохастических подходов к решению различных математических задач. В 1933 году И.Г. Петровский показал, что случайное блуждание асимптотически связано с решением эллиптического дифференциального уравнения в частных производных. После этих открытий стало понятно, что стохастические процессы можно описывать дифференциальными уравнениями и, соответственно, исследовать при помощи хорошо на тот момент разработанных математических методов решения этих уравнений.

Сначала Энрико Ферми в 1930-х годах в Италии, а затем Джон фон Нейман и Станислав Улам в 1940-х в Лос-Аламосе (Национальная лаборатория в штате Нью-Мексико) предположили, что можно использовать связь между стохастическими процессами и дифференциальными уравнениями «в обратную сторону». Они предложили использовать стохастический подход для аппроксимации4 (приближения) многомерных интегралов в уравнениях переноса, возникших в связи с задачей о движении нейтрона в изотропной среде. Идея была развита Уламом, который по иронии судьбы боролся с вынужденным бездельем во время выздоровления после болезни, и, раскладывая пасьянсы, задался вопросом, какова вероятность того, что пасьянс «сложится». Ему в голову пришла идея, что вместо того, чтобы использовать обычные для подобных задач соображения комбинаторики, можно просто поставить «эксперимент» большое число раз и, таким образом, подсчитав число удачных исходов, оценить их вероятность. Он же предложил использовать компьютеры для расчётов методом Монте-Карло.

Появление первых электронных компьютеров, которые могли с большой скоростью генерировать псевдослучайные числа, резко расширило круг задач, для решения которых стохастический подход оказался более эффективным, чем другие математические методы. После этого произошёл большой прорыв и метод Монте-Карло стал применяться во многих задачах, однако его использование не всегда было оправдано из-за большого количества вычислений, необходимых для получения ответа с заданной точностью.

Годом рождения метода Монте-Карло считается 1949 год, когда в свет выходит статья Метрополиса и Улама «Метод Монте-Карло». Название метода происходит от названия коммуны в княжестве Монако, широко известного своими многочисленными казино, поскольку именно рулетка является одним из самых широко известных генераторов случайных чисел. Станислав Улам пишет в своей автобиографии «Приключения математика», что название было предложено Николасом Метрополисом в честь его дяди, который был азартным игроком. [12]







Date: 2015-11-15; view: 2119; Нарушение авторских прав



mydocx.ru - 2015-2022 year. (0.016 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию