Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Шестое действие
Сложение и умножение имеют по одному обратному действию, которые называются вычитанием и делением. Пятое математическое действие – возведение в степень – имеет два обратных: разыскание основания и разыскание показателя. Разыскание основания есть шестое математическое действие и называется извлечением корня. Нахождение показателя – седьмое действие – называется логарифмированием. Причину того, что возведение в степень имеет два обратных действия, в то время как сложение и умножение – только по одному, понять нетрудно: оба слагаемых (первое и второе) равноправны, их можно поменять местами; то же верно относительно умножения; однако числа, участвующие в возведении в степень, т. е. основание и показатель степени, неравноправны между собой; переставить их, вообще говоря, нельзя (например, 35 ¹ 53). Поэтому разыскание каждого из чисел, участвующих в сложении и умножении, производится одинаковыми приемами, а разыскание основания степени и показателя степени выполняется различным образом. Шестое действие, извлечение корня, обозначается знаком R. q. 4352 вместо нынешнего обозначения
Если прибавить к этому, что в ту эпоху еще не вошли в общее употребление, нынешние знаки для плюса и минуса, а вместо них писали буквы р. и т., и что наши скобки заменяли знаками |_ _|, то станет ясно, какой необычный для современного глаза вид должны были иметь тогда алгебраические выражения. Вот пример из книги старинного математика Бомбелли (1572): R. c. |_ R. q. 4352 p. 6 _| m. R. c. |_ R. q. 4352 m. 16 _|. Мы написали бы то же самое иными знаками:
Кроме обозначения <Paaaa Date: 2015-11-13; view: 420; Нарушение авторских прав |