Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Topic: Valid arguments





(Логически обоснованные доводы. Use of reason to decide something or persuade someone)

Definition: An argument is a finite collection A1, A2, …, An of statements (simple or compound), followed by a statement A. We denote an argument by the notation:


The horizontal bar stands for the word “therefore”. Each of the statements A1, A2,.., An is called a premise of the argument. The statement A is called the conclusion of arguments.

Note: In practice we are interested only in arguments for which the premises are true. Because arguments like:

A1 = “My father was Alexander the Great.”

A2 = “My mother was the English Queen Victoria.”

A = “I am your present king.”

Only make us feel pity for the speaker.

Definition: An argument A1, A2, …, An ∴ A is valid if whenever on assignment of truth values to the statement variables makes the premises A1, A2, …, An true, then it also makes the conclusion A true.

 

Another name and definition of a valid argument

Definition: Given a propositional formula G. Let a1, a2, …, an, be propositional variables of G. Then the interpretation of G is an assignment of truth values to a1, a2, …, an in which every ai is assigned T or F but not both.

Definition: Given formulas F1,F2,…,Fn and a formula G. G is said to be a logical consequence of F1,F2,…,Fn (or logically follows form F1,F2,…,Fn ) if and only if for any interpretation I in which F1 ˄ F2 ˄… ˄ Fn is true,G is also true.(Another way to say the same: if F1 ˄ F2 ˄… ˄ Fn → G is a tautology).

F1,F2,…,Fn are called axioms(or postulates, premises) of G.

If G is a logical consequence of F1, F2,…,Fn , then the formula ((F1 ˄ F2 ˄ ˄ Fn) → G) is called a theorem. G is also called the conclusion of the theorem.

In mathematics and in other fields, many problems are started as problems of proving theorems.

Ex: Consider the formulas:

F1 = (p → q), F2 = ~q, G = ~p

Show that G is a logical consequence of F1 and F2 . (= Show that argument

p → q, ~q ∴ ~p is valid.)

Method 1: By a truth table show that G is true for every interpretation where F1 ˄ F2 is true (same: F1 ˄ F2 → G is a tautology)

p q p → q ~q (p → q) ˄~q ~p ((p → q) ˄~q) →~p
F F T T T T T
F T T F F T T
T F F T F F T
T T T F F F T

 

if premises are true, then conclusion is also true Is a tautology

 

Method 2: Transform analytically [((p → q) ˄ (~q)) →~p] to a tautology: ((p → q) ˄~q) → (~p) = ~((p → q) ˄(~q)) ˅(~p) = ~((~p ˅ q) ˄(~q)) ˅(~p) =

~(~p ˄ ~q) ˅ (q ˄ ~q)) ˅(~p) = ~(~p ˄ ~q ˅ с) ˅ (~p) = p ˅ q ˅ (~p) =

(p ˅ ~p) ˅q = t ˅ q = t (tautology).

 

An argument that is not valid is said to be invalid.

Ex 1: consider the argument

p → q

p

q

 

 

An example of such an argument is:

 

p → q = “If today is Saturday then I do not have to go to the school.”

p = “Today is Saturday”.

q = “Therefore, I do not have to go to school”.

 

In order to decide whether this argument is valid or not, we consider the following truth table.

 

p q p → q
F F T
F T T
T F F
T T T

 

It is in the last line of the table, that p → q and p are both true. But in this case, the conclusion q is also true. Hence, according to the definition, the argument is valid.

This simple, but important argument is called modus ponens.

 

Example: Arguments that looks like modus ponens but which is not.

p ® q = “If today is Saturday then I do not have to go to school”.

q = “I do not have to go to school.”

p = “Therefore, today is Saturday.”

 

Is the argument valid or not?

p q p ®q
F F F
F T T
T F F
T T T

 

In these two rows both premises are true. But the conclusion p takes two values: true and false in these rows. Hence, the argument is invalid.

 

Date: 2015-12-11; view: 284; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию