Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Topic: Logical equivalence
Definition: two compound statements A and B are said to be logically equivalent if they always have the same truth table. We denote it by Ex: Note: in the truth table of A and B, the statement variables must be placed in the same sequence, in order to compare tables correctly. Theorem 2: The compound statements A and B are logically equivalent if and only if the compound statement A ↔ B is a tautology. (In a sense, A and B are logically “equal”.) Laws of propositional algebra are the examples of logically equivalent statements. Let p, q and
1. Properties of c and t: 1.1 p ˅ c ≡ p 1.2 p ˄ t ≡ p 1.3 p ˅ t ≡ t 1.4 p ˄ c ≡ c 2. Properties of negation: 2.1 ~ t ≡ c 2.2 ~ c ≡ t 2.3 p ˅ ~ p ≡ t 2.4 p ˄ ~ p ≡ c 2.5 ~ (~p) ≡ p Other lows (properties of connectives) are also familiar from the set algebra and the 2-element. Boolean algebra: commutative, associative, idempotent, distributive, De Morgan’s laws. For example, property 1.1 says the following: - “any statement p or any permanently false statement с is a true statement if and only if p is true”. - “the truth value of any statement p is the same as the value of p or false statement c, never mind what are the meanings of p and c.” Now we can talk about propositional algebra: {set of propositions} + { ˅, ˄, ~}. It’s laws are just patterns for making compound statements (sentences of natural language) with the same truth values. Note: - In propositional algebra connectives “→” and “↔” are considered as shorthand notations for some compositions made of ˅, ˄, ~. - “≡” replaces the words “have the same truth values (= truth table)”. Using these properties it is possible to transform statements of natural language without changing their true/false value. Ex1: Given a compound statement:
Write the negation of this statement:
Ex2: Statement:
Ex3: Prove that:
It’s contrapositive statement:
Ex4: Given
It is certainly true.
In this case it is easier to use the contrapositive statement, which is
Proof: It is easy to check by making truth tables that p ↔ q ≡ (p → q) ˄ (q → p). So in order to prove the original statement (theorem), we must prove both “If n2 is odd then n is odd” is true and “If n is odd then n2 is odd” is true. The first statement (p → q) was proved in Ex5. So we just prove here the statement “If n is odd then n2 is odd”. If n is odd then it must have the form n = 2k+1 for some int k. But then n2 = (2k +1)2 = 4k2 +4k +1. Hence, n2 is odd. This is the proof of the statement (q → p). Date: 2015-12-11; view: 386; Нарушение авторских прав |