Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Лекция 1. Предмет, задачи, значение и методы геологии. История развития геологии как науки
Образованное от двух греческих слов(«гео» - Земля и «логос» - учение) понятие «геология» объединяет десятки научных направлений и сотни специальностей, занимающихся изучением планеты Земли, ее структуры, строения, состава, состояния и динамики в результате протекающих в ее пределах и на поверхности разнообразных процессов. Геология, по образному выражению американских геологов А. Аллисона и Д. Пальмера – «наука о вечно меняющейся планете Земля», являющейся объектом данной науки. Земля – сложное материальное тело, имеющее историю развития более 4 млрд. лет. Представления о его строении, происхождении, истории развития за последние десятилетия значительно изменились. Менялся следовательно и предмет геологии, т.е. совершенствовались модели планеты и ее отдельных элементов. Появление и развитие геологии и ее научных направлений было вызвано потребностями жизни. Для обеспечения условий выживания племен, народов и человечества в целом были необходимы различные полезные ископаемые – руды металлов, топливо, вода, строительные материалы, а также сведения о строительных и мелиоративных условиях окружающей среды. Развитию геологии очевидно способствовала и любознательность человека – желание понять причины тех или иных природных явлений – землетрясений, вулканических извержений, цунами, происхождение горных обвалов и оползневых смещений, карстовых пещер и т.д. Велико и общекультурное значение геологии наряду с астрономией как одной из важнейших мировоззренческих дисциплин. Трудно представить гармонически развитого человека без знания азов строения Земли – своей колыбели – ее истории, процессах и явлениях. Геологические знания не только помогают преодолевать суеверный страх перед природой, но дают возможность изучать их, познавать и использовать в хозяйственной деятельности. Любая наука отличается от других своим объектом, предметом и методами. Планету «Земля» геология постигает путем изучения геологических тел – минералов, горных пород, толщ, слоев, свит, тектонических структур, их происхождения и изменений. Геология – наука историческая. Возраст геологических тел исчисляется тысячами, миллионами и даже миллиардами лет. Воспроизводить условия их образования очень сложно. Но геологии помогает метод актуализма (М. Ломоносов, Ч. Лайель), гласящий, что процессы, изменяющие лик Земли сегодня, примерно также протекали и в прошлом. изучение деятельности рек, морских волн, ветра, вулканов и других процессов и явлений сегодня, помогает понять их роль в прошлом. Таким образом, изучая нашу планету, геология освещает целый круг вопросов, а именно: - вещественный состав Земли (минералогия, петрография); - строение Земли и процессы, которые происходят в ее недрах и на ее поверхности (геотектоника, динамическая геология, вулканология, сейсмология, геология моря); - историю формирования и развития Земли, изменение ее облика (историческая геология, палеонтология, палеогеография); - исследования прикладного характера (учение про полезные ископаемые, гидрогеология, инженерная геология и т.д.). Отсюда вытекают главные задачи этой науки: - изучение вещественного состава внутренних оболочек Земли; - изучение внутреннего строения Земли; - изучение закономерностей развития литосферы и земной коры; - изучение истории развития жизни на Земле и др. Для решения поставленных перед собой целей и задач, геология руководствуется особым методологическим аппаратом. Основными методами, применяемыми при геологических исследованиях являются: 1. Методы полевой геологической съемки - изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов. 2. Геофизические методы - используются для изучения глубинного строения Земли и литосферы. Сейсмические методы, основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы, изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и,следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности - Матуяма. 3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов. 4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы. 5. Метод актуализма - протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом. 6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли). Постепенное накопление геологических знаний привело к дифференциации геологической науки, выделению целого ряда родственных наук, каждая из которых обладает своим объектом и предметом исследования. На сегодняшний день науки геологического цикла весьма обширны и разнообразны, а геологических специальностей насчитывается более сотни. Среди основных наук геологического цикла можно назвать: минералогия – физические особенности и химическая природа минералов; петрография – состав, строение, происхождение и условия залегания горных пород; геотектоника – движение и строение земной коры, формы залегания слоев горных пород; динамическая геология – процессы, которые изменяют земную кору и вид поверхности нашей планеты в целом; палеонтология – наука про древние ископаемые организмы, их строение, развитие, географическое распространение в разные периоды истории Земли; данная отрасль геологии тесно связана с зоологией и ботаникой, поскольку с ее помощью изучается история развития растительного и животного мира; историческая геология – геологическая история Земли от ее формирования как планеты до современной эпохи, выявляет последовательность изменений, которые происходили на протяжении существования планеты; палеогеография – физико-географические условия, которые существовали на поверхности Земли в предыдущие геологические эпохи; учение про полезные ископаемые – исследование происхождения, закономерностей распространения и форм залегания полезных ископаемых; гидрогеология – условия залегания воды в толще земной коры, ее состав, происхождение и особенности; инженерная геология – горные породы земной коры, перспективы их использования для строительства различных сооружения: зданий, мостов, прокладки каналов и т.п.; для этого изучается прочность и стойкость пород к температурным изменениям, нагрузкам и возможности развития в них различных негативных геологических процессов (сдвигов, суффозий, карста, просадок и т.п.) В последнее время растет экологическая роль геологии. Она разрабатывает вопросы надежного захоронения вредных отходов производства, особенно радиоактивных и химических, разумного строительства с учетом возможного ущерба от опасных геологических факторов: землетрясений, эрозии, оползней и т.д. Все геологические науки тесно связаны между собой и дают целостную картину строения и развития земной коры и Земли в целом. Геология тесно связана с географией, химией, физикой, ботаникой, зоологией и другими естественными науками. Она является основанием для специальных географических дисциплин: физической географии, общего землеведения, геоморфологии и т.д. Геология играет важную роль в изучении эволюции географической оболочки. Исследование месторождений полезных ископаемых является важным элементом для глубокого понимания экономической географии. Связь геологии и химии заключается в изучении химического состава земной коры, происхождения, особенностей, использования природных химических соединений – минералов. Исследования минералов раскрывают суть химических процессов, которые происходят в природе. Кроме того богатства недр являются основным источником сырья для химической промышленности. С биологией связан отдельный раздел геологии – палеонтология, которая изучает историю возникновения и развития органического мира по окаменелым останкам. С другой стороны, исследования условий жизни современных растительных и животных организмов помогает геологам реконструировать условия прошлых периодов истории Земли. Как сказал российский академик В.О. Обручев: «геология учит нас смотреть открытыми глазами на окружающую нас природу и понимать историю ее развития», т.е. дает научное объяснение целому ряду природных процессов и явлений. Геология тесно связана также с практическою деятельностью человека: разведка месторождений полезных ископаемых, которые используются в промышленности. Только после инженерно-геологического обоснования проектов начинается строительство жилых, хозяйственных и инфраструктурных объектов. Горные породы и рельеф являются важными факторами почвообразовательных процессов, которые необходимо учитывать в сельскохозяйственной деятельности. С тех пор как человек стал удивляться звездам не небе, значительна часть его умственной энергии, очевидно, тратилась на познание Земли. Столетия и тысячелетия ему понадобились, чтобы увидеть в камне орудия труда и защиты. Затем он научился выплавлять медь, бронзу, железо, накапливая знания и навыки поиска руд этих металлов, признаков месторождений полезных ископаемых. Полагают, что учение о месторождениях полезных ископаемых, зародившееся в IV тысячелетии до н.э. положило начало геологии как науки. Большой вклад в развитие геологии в Античное время внесли такие ученые как Аристотель, доказавший, что Земля имеет форму шара, и выдвинувший предположение о том, что постоянно меняется площадь, занятая сушей и морем; Страбон, утверждавший, что Земля постоянно испытывает вертикальные движения, то поднимаясь, то опускаясь; Плиний Старший, написавший 36-томный труд «Естественная история», в котором собрал и систематизировал геологические знания своей эпохи. Капитальные труды собственно геологического содержания появляются в Средние века. Так, персидский врач и философ Авиценна разработал первую классификацию минералов, а ученому из Хорезма Аль-Бируни принадлежит труд «Собрание сведений о познании драгоценных минералов». В эпоху Возрождения ученые вплотную приблизились к истокам современного познания. Были сделаны величайшие открытия в географии, физике, биологии и других естественных науках, в том числе и в геологии. Так, Леонардо да Винчи, работая на строительстве ирригационных сооружений в Италии, пришел к выводу о том, что участки суши, где велось строительство, когда-то были морским дном, поскольку в горных породах встречалось много остатков морских организмов. Большое значение для развития геологии имели работы по астрономии М. Коперника, который доказал, что именно Земля вращается вокруг Солнца, а не наоборот (гелиоцентрическая модель). Отдельные мысли и идеи были выдвинуты в области познания геологических процессов и явлений. Так, датский ученый Н. Стено описал формы дислокаций земной коры, трансгрессии и регрессии морей, выдвинул вулканическую теорию образования гор. Его работы заложили основы таким геологическим наукам, как стратиграфия и тектоника, кроме того с именем этого ученого связано введение в методологический аппарат науки геологического метода. Немецкий физик, математик и философ Г.В. Лейбниц, первым высказал мысль о том, что горные породы образуются из горячей расплавленной массы, из которой когда-то состояла Земля. Значительный вклад в дальнейшее развитие геологии внесли труды Иммануила Канта «Всеобщая естественная история и теория неба» и М.В. Ломоносова «О слоях земных», «Слово о рождении металлов от трясения земли», «Первые основы металлургии или рудных тел». Конец XVIII- начало XIX в.в. ознаменовались экспедиционным исследованием геологического строения многих районов Европы и Азии, которые проводились П.С. Паллосом, И.И. Лепехиным и др. Геологическая карта Восточного Забайкалья, составленная Д. Лебедевым и М. Ивановым, оказалась одной из первых геологических карт в мире. В XVIII – XIX в.в. появляется ряд работ, давших значительный толчок дальнейшему развитию науки. Профессор Фейбергской академии в Саксонии А. Вернер стал одним из основоположников современной минералогии. В области теоретической геологии он возглавлял так называемую школу нептунистов и утверждал, что основным геологическом фактором в изменении лика планеты является вода. Шотландский ученый Д.Геттон (основатель школы плутонистов) считал, что ведущая роль в геологических процессах принадлежит подземным силам. Английский ученый В. Смит разработал палеонтологический метод определения относительного возраста горных пород. Суть метода заключается в том, что относительный возраст горных пород определяют по остаткам ископаемых организмов, т.к. с каждым комплексом разных по возрасту осадочных пород связан комплекс определенных организмов. В первой половине XIX века началось систематическое изучение остатков ископаемых организмов с целью разделения осадочных толщ и выработки единой для всех стран геохронологической шкалы. В это время также происходит зарождение палеонологии и исторической геологии как самостоятельных научных дисциплин. Во второй половине XVIII века закладываются основы теоретической геологии, поднимаются вопросы происхождения горных пород. Благодаря работам И. Канта и П.С. Лапласса возникает научная космогония. Работы Ж. Ламарка, Ч. Лайеля, Ч.Дарвина опровергаю теорию катастроф Ж.Кювье, утверждая эволюционный этап развития Земли. В 80-х годах XIX века Дж. Голл и Дж. Дэн сформулировали основные положения теории геосинклиналей.
Лекция 2. Земля во Вселенной. Особенности внутреннего строения планеты. Земля представляет собой космическое тело, планету, являющуюся частью Вселенной. Во Вселенной все небесные тела образуют скопления разной сложности. Так, Земля со спутником Луной, образуют систему. Она входит в более крупную систему – Солнечную, образованную Солнцем и движущимися вокруг него небесными телами – планетами, астероидами, спутниками и кометами. Солнечная система в свою очередь является частью Галактики – это Галактика Млечного пути. Галактики в свою очередь образуют еще более сложные системы – скопления галактик. Солнечная система состоит из центральной звезды – Солнца, девяти планет, а также спутников, астероидов и комет. Все планеты солнечной системы делятся на две большие группы: 1. "Планеты земного типа" (Меркурий, Венера, Земля, Марс). Отличительные особенности этих планет – близкое расположение в Солнцу; небольшие размеры; высокая плотность вещества; основными их составляющими являются силикаты (соединения кремния) и железо, следовательно планеты земной группы твердые тела; планеты медленно вращаются вокруг своей оси (у Меркурия период вращения равен 58,7 земных суток; у Венеры – 243, у Марса – немногим более суток). Из-за медленного вращения полярное сжатие у планет небольшое и они имеют форму близкую к шару. 2. "Планеты-гиганты" (Юпитер, Сатурн, Уран, Нептун, Плутон). Планеты данной группы расположены на большом расстоянии от Солнца, имеют большие размеры. Наиболее распространенными химическими элементами являются водород и гелий, следовательно планеты-гиганты представляют собой газовые шары. Все планеты-гиганты с большой скоростью вращаются вокруг своей оси, благодаря чему имеют большое полярное сжатие. Все планеты имеют большое количество спутников. Астероиды (от греческого astereideis – звездоподобные) – малые планеты Солнечной системы Они образуют тонкое кольцо между орбитами Марса и Юпитера (предположительно образовались после разрушения планеты Фаэтон или за счет сгустков первичного газопылевого облака). Их среднее расстояние от Солнца 2,8 – 3,6 а.е. Первый астероид был назван Церера (1801 год), к 1880 году астероидов было известно уже около 200, сейчас орбиты вычислены для более 40 000 астероидов. Самый большой астероид Церера имеет диаметр 1000 км, диаметр Паллады – 608, Весты – 540, Гигии – 450 км. Практически все астероиды имеют неправильную форму, только самые крупные приближаются к шару. Кометы (от греч. kometes – хвостатые) небольшие несветящиеся тела Солнечной системы, которые становятся видимыми только при подходе к Солнцу. Движутся по сильно вытянутым эллипсам. Число комет измеряется миллионами. С приближением к Солнцу у них резко обособляется «голова» и «хвост». Головная часть состоит из льда и частиц пыли. В разреженной газо-пылевой среде хвоста обнаружены ионы натрия и углерода. Одна из самых известных комет – комета Галлея, каждые 76 лет она появляется в зоне видимости Земли. Метеоры – мельчайшие твердые тела массой несколько граммов, вторгшиеся в атмосферу планеты. Мелкие частицы вещества, двигаясь со скоростью 11-12 км/с, из-за трения в атмосфере разогреваются до 10000С,что вызывает их свечение на протяжении нескольких секунд. Они сгорают в атмосфере не долетая до поверхности. Метеоры делятся на единичные и метеорные потоки. Наиболее известны метеорные потоки: Персеиды (падают в августе), Дракониды (октябрь), Леониды (ноябрь). Если Земля пересекает орбиту метеорного потока, частицы «налетают на планету», начинается «звездный дождь». Упавшие на поверхность планеты небесные тела называются метеоритами. Наибольший метеорный кратер на Земле имеет диаметр 1265 м и расположен в Аризоне около каньона Диабло. Наиболее распространенными элементами метеоритов являются кислород, железо, кремний, магний, никель и др. Земля является третьей планетой от Солнца и самой крупной планетой земной группы. Вместе с Луной Земля образует двойную планету. На ранних этапах своего формирования Земля представляла собой холодное космическое тело, содержащее все известные в природе химические элементы. Постепенно за счет гравитационных сил, энергии распада радиоактивных элементов и лунных приливов недра Земли стали разогреваться. Когда температура недр достигла уровня плавления окислов железа и других соединений начались активные процессы формирования ядра и основных оболочек планеты: ядра, мантии и земной коры. Изучение внутреннего строения земли связано с большими трудностями, т.к. ученые не могут непосредственно наблюдать те процессы, которые происходят в глубинах планеты. Основными источниками информации о строении Земных недр, их вещественном составе, агрегатном состоянии являются сейсмические волны, возникающие при землетрясениях и целенаправленных взрывах. В течение небольшого отрезка времени они пронизывают практически всю Землю. При прохождении сквозь тело планеты сейсмические волны на некоторых глубинных уровнях заметно меняют свою скорость, что свидетельствует об изменении свойств основных оболочки или геосферы: земную кору, мантию и ядро. Земная кора. Земная кора представляет собой верхний слой жесткой оболочки Земли – литосферы. Земная кора отделена от подстилающей ее литосферной мантии границей Мохоровичича. Поверхность земной коры формируется благодаря трем разнонаправленным воздействиям: тектоническим движениям, создающим неровности рельефа, денудации этого рельефа за счет разрушения и выветривания слагающих его горных пород и благодаря процессам осадконакопления. В результате постоянно формирующуюся и одновременно сглаживающаяся поверхность земной коры оказывается достаточно сложной. Мощность земной коры колеблется от 5-10 км под океанами до 70-75 км под горными системами. Состав, строение и мощность коры континентов и океанов различны, что дало основание для выделения ее главных типов: континентального, океанического и двух переходных. Океаническая земная кора примитивна по своему составу и по существу представляет собой верхний дифференциирванный слой мантии, перекрытый сверху тонким слоем осадков. В океанической коре обычно выделяют три слоя. Осадочный слой – самый верхний слой океанической земной коры. Средняя мощность осадочного слоя невелика и составляет около 500 м., однако сильно варьирует. Так, возле континентальных окраин и в районах крупных речных дельт она возрастает до 10-12 км. Связано это с тем, что практически весь осадочный материал, сносимый с суши, отлагается в прибрежных участках океанов и на материковых склонах континентов. В открытом океане толщина осадочного слоя возрастает от гребней срединно-океанических хребтов, где осадков почти нет, к их периферии. Второй слой океанической коры – базальтовый. Общая мощность базальтового слоя достигает 1,5 – 2 км. Верхний слой базальтового слоя сложен базальтовыми лавами толеитового состава. Изливаясь в подводных условиях, эти лавы приобретают причудливые формы гофрированных труб и подушек, поэтому их еще называют подушечными лавами. Ниже располагаются долеритовые дайки, того же толеитового состава, представляющие собой бывшие подводящие каналы, по которым базальтовая магма в рифтовых зонах изливалась на поверхность океанского дна. Базальтовый слой океанической коры обнажается во многих местах океанского дна, примыкающих к гребням срединно-океанических хребтов. Частые находки в крупных трансформных разломах включений габбро-толеитового состава и серпентинитов свидетельствует о том, что в состав океанической коры входят и эти крупнокристаллические породы. Таким образом, нижний слой океанической коры представлен габбро-серпентинитовыми породам. По сейсмическим данным мощность этого, третьего слоя составляет 4,5-5 км. Таким образом, общая мощность океанической земной коры составляет 6,5-7 км. Снизу океаническая кора подстилается кристаллическими породами верхней мантии. Под гребнями срединно-океанических хребтов океаническая кора залегает непосредственно над очагами базальтовых расплавов, выделившихся из вещества горячей мантии. Океаническая кора формируется в рифтовых зонах срединно-океанических хребтов за счет происходящей под ними сепарации (выделения) базальтовых расплавов из горячей мантии и их излияния на поверхность океанского дна. Ежегодно в зонах поднимается из астеносферы, изливается на океанское дно и кристаллизируется не менее 12 км3 базальтовых расплавов, формирующих собой весь второй и часть третьего слоя океанической коры. Континентальная земная кора как по составу, так и по строению резко отличается от океанической. Ее мощность колеблется от 20-25 км под островными дугами и участками с переходным типом земной коры до 80 км под молодыми складчатыми поясами Земли (Андами и Альпийско-Гималайским). В противоположность океанической коре большая часть континентальной коры очень древняя. Судя по возрасту древнейших земных пород, начало формирования континентальной коры относится к архею. К рубежу архея и протерозоя в результате тектонической активности Земли сформировалось приблизительно 70% массы современной континентальной коры. В строении континентальной земной коры также выделяют три слоя: осадочный, гранито-гнейсовый и базальтовый. Мощность верхнего осадочного слоя колеблется в пределах 0 км на древних щитах до 10-15 км на пассивных окраинах континентов и в краевых прогибах платформ. Среди осадков преобладают глинистые отложения и карбонаты, сформировавшиеся в условиях мелководных морских бассейнов. Второй слой континентальной коры представлен гранито-гнейсовыми породами докембрийского (архейско-протерозойского возраста) (гнейсами, диоритами, гранитами и кристаллическими сланцами), образовавшимися в результате процессов регионального и метаморфизма. Мощность слоя 10-15 км. Третий слой земной коры представлен базальтами, мощность этого слоя составляет 15-35 км. Граница, разделяющая гранито-гнейсовый и гранулито-базальтовый слои континентальной земной коры называется границей Конрада. Субокеанский подтип земной коры характерен для котловин внутренних и окраинных морей (Черного, Азовского, Охотского, Средиземного и т.д.). Для него характерна большая мощность осадочного слоя – 5-10 км (местами может достигать 20 км). Субконтинентальный подтип земной коры характерен для островных дуг (Курильские, Японские острова). По основным характеристикам близок к континентальному, но его мощность заметно меньше – 20-30 км. Мантия. Силикатная оболочка Земли – ее мантия – расположена между подошвой земной коры и поверхностью земного ядра на глубинах около 2900 км. Является самой крупной геосферой, составляющей 83% объема планеты и 66% ее массы. Граница между земной корой и мантией известна как поверхность Мохоровичича. Сейсмологические данные свидетельствуют о достаточно сложном внутреннем строении мантии. По значениям физических параметров мантия делится на верхнюю (от поверхности Мохоровичича до глубины 670 км) и нижнюю (от 670 до 2900 км). По сравнению с горными породами, слагающими земную кору, породы мантии отличаются большей плотностью, и скорость распространения сейсмических волн в них заметно выше. Это объясняется не только сжатием вещества под большим давлением, но и химическими процессами, ведущими к превращению одних минералов в другие. Мантия характеризуется увеличением температуры с 2.000 дл 3.700 °С и давления с 35 до 136 ГПа. Верхняя мантия имеет хорошо фиксируемый внутренний раздел, проходящий на глубине 410 км и разделяющий ее на два слоя. Верхний слой, залегающий от поверхности Мохоровичича до глубины 410 км, называется слоем Гутенберга. Он характеризуется замедлением темпа нарастания скорости прохождения сейсмических волн с глубиной, а в нижнем слое отмечается даже ее снижение, что объясняется размягченным, частично расплавленным состоянием вещества мантии. Эта часть слоя Гутенберга получила название астеносфера. Верхняя часть слоя Гутенберга вместе с земной корой образует единую жесткую оболочку – литосферу, располагающуюся над астеносферой. Литосфера и астеносфера составляют тектоносферу – главную область проявления тектонических процессов Земли. Понятия литосфера и астеносфера чисто физические. Они различаются по вязкости – жесткая и хрупкая литосфера и более пластичная, подвижная астеносфера. Граница литосферы и астеносферы в осевых зонах срединно-океанических хребтов местами находится на глубине 3-4 км. В направлении к периферии океанов мощность литосферы увеличивается за счет низов коры, а основном верхов мантии (литосферной мантии) и может достигать 80-100 км у границ с континентами. В центральных частях континентов, особенно под щитами древних платформ, таких как Восточно-Европейская или Сибирская, мощность литосферы составляет 150-200 км, достигая своего максимума в Южной Африке (350 км). Практически вся литосферная мантия сложена ультраосновными породами перидотитами, реже дунитами, главными минералами которых являются пироксены, оливин, гранаты. Ниже слоя Гутенберга, в интервале 410-670 км расположен слой Голицына, который отличается весьма резким нарастанием скорости сейсмических волн с глубиной, что объясняется увеличением плотности мантийного вещества на 10% в связи с существенными минеральными преобразованиями переходом одних минеральных видов в другие, с более плотной упаковкой атомов: оливин переходит в шпинель, пироксен – в гранат. Предполагается, что этот слой сложен преимущественно гранатами. Важным компонентом химического состава слоя является вода, содержание которой по некоторым оценкам составляет около 1%. Нижняя мантия начинается с глубины 670 км и простирается по радиусу Земли до 2900 км. Основными элементами, составляющими нижнюю мантию являются силикаты (прежде всего это перовскит и магнезиовюстит). Однако наблюдаемая плотность вещества нижней мантии заставляет предполагать увеличение соотношения железа и магния. Нижняя мантия состоит из двух слоев. Предполагается, что нижний слой, находящийся на границе нижней мантии и внешнего ядра может порождать огромные, направленные к поверхности Земли сквозьмантийные тепловые потоки, которые могут проявляться на поверхности планеты в виде крупных вулканических областей, таких как Гавайские острова, Исландия и т.п. Ядро Земли занимает около 17% объема планеты и составляет 34% ее массы. Граница, разделяющая ядро и мантию носит название слоя Вихерта-Гутенберга. По данным сейсмографии поверхность ядра является неровной, образуя выступы и впадины. В строении ядра выделяют три элемента: внешнее ядро, внутренне ядро и переходный слой. Внешнее ядро. Не пропускает поперечные сейсмические волны, что может свидетельствовать о том, что вещество, его слагающее, находится в жидком состоянии. В настоящее время большинство ученых полагают, что внешнее ядро состоит из расплава оксида железа с примесью никеля и других более легких элементов (серы, кремния, кислорода и водорода), понижающих его плотность и температуру плавления. Предполагается, что конвективные потоки во внешнем ядре генерируют главное магнитное поле Земли. Внутренне ядро состоит из железо-никелевого сплава, возможно с некоторой примесью серы и кислорода. Давление здесь достигает 360 ГПа, а температура оценивается в 6.500 – 6.800°С. Переходный слой между внешним и внутренним ядром вероятнее всего состоит из сернистого железа – триолита. Это сравнительно тонкий слой, мощностью 140 км. Новейшие исследования свидетельствуют о том, что для внутреннего ядра характерно стеклообразное состояние. Железо в нем структурируется в твердое состояние не с помощью кристаллической решетки, а в виде застывшего высоковязкого расплава. Этот расплав стеклуется или переходит в состояние стекла. Скорее всего ядро Земли представляет собой высокоупругое тело с плавно нарастающей вязкостью вплоть до стекольных значений.
Date: 2015-12-11; view: 4582; Нарушение авторских прав |