![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Закон нормального распределения
Закон нормального распределения находит большое применение в различных отраслях техники. Этому закону подчиняются, многие непрерывные случайные величины, встречающиеся в технике, например ошибки измерения, высота микронеровностей на обработанной поверхности и многие другие. Широкое применение закона нормального распределения в технике находит свое теоретическое обоснование в теореме Ляпунова. Опуская строгую математическую формулировку теоремы Ляпунова и ее доказательства ввиду их сложности, ограничимся лишь описанием следствия из этой теоремы, которое заключается в следующем. Если случайная величина X представляет сумму очень большого числа взаимно независимых случайных величин х1, х2, …, хn, влияние каждой из которых на всю сумму ничтожно мало, то независимо от того, каким законам распределения подчиняются слагаемые х1, х2, …, хn, сама величина X будет иметь распределение вероятностей, близкое к нормальному, и тем точнее, чем больше число слагаемых.
Дифференциальная функция нормального распределения графически выражается в виде кривой холмообразного типа (рис. 11). Из вида кривой нормального распределения следует, что она симметрична относительно ординаты точки х =
Интегральный закон нормального распределения выражается в общем виде так: Интегральная кривая нормального распределения представлена на рис. 14.
Вероятность Произведем замену переменной х путем подстановки и, учитывая, что х = ts + Новые пределы интегрирования Знак плюс в уравнении (47) изменился на минус вследствие изменения пределов интегрирования с t1 — 0 на 0 — t1. Интеграл Для практического использования закона нормального распределения необходимо зону рассеивания случайной величины х: ограничить конечными пределами. В технике и многих других прикладных науках считают, что практическая зона рассеивания случайной величины х, подчиняющейся закону нормального распределения, лежит в пределах Date: 2015-10-19; view: 634; Нарушение авторских прав |