Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Формы представления непрерывных объектов в ГИС





 

Векторные модели делятся на собственно векторные и векторно-топографические.

В основе векторных моделей лежит понятие вектор. Вектор - направленный отрезок у которого есть координаты начала и координаты конца. Основное преимущество векторных моделей - на порядки меньшее требование к памяти и меньшее время на обработку и представление данных, чем у растровых.

При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы или полигоны задаются наборами линий.

Линией называют границу, сегмент, цепь или дугу. Основные типы координатных данных в классе векторных моделей определяются через базовый элемент «Линия» следующим образом. Точка определяется как выродившаяся линия нулевой длины, линия - как линия конечной длины, а площадь представляется последовательностью связанных между собой сегментов.

Существует два основных вида векторных моделей: векторно-топологических моделей данных, векторные нетопологические модели данных

Для случая векторно-топологических моделей данных (рис. 2) обычно существуют некоторые дополнительные ограничения - в один лист одного тематического слоя можно поместить объекты не всех геометрических типов одновременно. Так, в ARC/INFO в одном покрытии (так называется физическая единица, соответствующая одному листу одного тематического слоя) можно поместить или только точечные, или только линейные, или только площадные объекты, или комбинацию линейных и точечных, либо линейных и площадных, но нельзя собрать вместе точечные и площадные или все три типа объектов. Это ограничение для практики никаких проблем не представляет, но оно типично для векторно-топологической модели данных.

 


Рис. 2. Векторно-топологическая модель

 

Векторные нетопологические модели данных (рис. 3) в этом смысле предоставляют больше свободы, но часто и в них в один слой помещаются только объекты одного геометрического типа. Число слоев при послойной организации данных может быть и ограничено, и практически неограничено в зависимости от конкретной реализации. При послойной организации данных удобно манипулировать большими группами объектов, представленных слоями как единым целым, например, включая или выключая слои для визуализации, определять операции, основанные на взаимодействии слоев. В целом можно сказать, что послойная организация данных имеет большой аналитический потенциал. Она часто используется при построении как векторно-топологических, так и векторно-нетопологических моделей пространственных данных для ГИС. (Так же как нередко и в САПР. Там, впрочем, отдельные слои могут обычно включать все типы объектов, и само это деление на слои носит более простой и формальный характер - они часто используются только для управления визуализацией и как удобный способ задания умолчаний для чертежа.) И абсолютно преобладает послойный принцип организации в растровых моделях данных.

 


Рис. 3. Векторная нетопологическая модель

 

Векторно-топологическая модель отличается от векторной тем, что объекты хранятся во взаимосвязи.

Топологические модели позволяют представлять элементы карты и всю карту в целом в виде графов. Теоретической основой моделей служат алгебраическая топология и теория графов. Топологическое векторное представление данных отличается от не топологического наличием возможности получения исчерпывающего списка взаимоотношений между связанными геометрическими примитивами без изменения хранимых координат пространственных объектов.

Топологические модели в ГИС задаются совокупностью следующих характеристик:

· связанность векторов - контуры, дороги и прочие векторы должны храниться не как независимые наборы точек, а как взаимосвязанные друг с другом объекты;

· связанность и примыкание районов - информация о взаимном расположении районов и об узлах пересечения районов;

· пересечение - информация о типах пересечений позволяет воспроизводить специальные символы, например мосты и дорожные пересечения

· близость - показатель пространственной близости линейных или площадных объектов, оценивается числовым параметром.

В растровых моделях деление на объекты осуществляется наиболее простым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. При этом каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности объекта. В ячейке модели содержится одно значение, усредняющее характеристику участка поверхности объекта. В теории обработки изображений эта процедура известна под названием пикселизация.

Нерегулярная сеть точек - произвольно расположенные точечные объекты, в качестве атрибутов имеющие значение поля в данной точке. С помощью такого способа представления, если не иметь очень густо расположенных по сравнению с пространственной изменчивостью поля точек, трудно гарантировать его адекватное представление. Сеть может быть слишком редкая, или точки, выбранные случайно, не попадают на характерные представительные места/значения, или наоборот, точки выбраны неслучайно и тоже не являются представительными. Для обработки такое представление тоже не очень удобно.

 

Рис. 4. Нерегулярная сеть точек

 

Регулярная модель - наиболее удобный для многих случаев вариант, когда поля задаются регулярно расположенными в пространстве точками достаточной густоты, особенно когда это не точки, интерполированные из нерегулярных, а измерения, проведенные по регулярной сети. Из них легко перейти к любой другой форме представления.

 

Рис. 5. Регулярная модель

 

Несколько особняком стоит модель данных TIN (triangulated irregular network - нерегулярная триангуляционная сеть), специально предназначенная для представления поверхностей значений, полей (в первую очередь, поверхности рельефа местности). Эта модель позволяет нам использовать для описания рельефа точки некоторой сетки. Точки могут размещаться как регулярно, так и нерегулярно. Для получения модели поверхности нам нужно соединить пары точек ребрами определенным способом, называемым триангуляцией. Тогда, при необходимости получения трехмерного представления, TIN может быть показана в виде проволочной модели или модели с закрашенными гранями. Наличие связок между точками дает некоторое представление о поведении поля (или форме поверхности) на данном участке в промежутке между точками. Поэтому модель данных типа TIN часто позволяет получать более качественное и экономное представление поверхностей (полей). Это средство представления поверхностей на самом деле использовалось в качестве главной структуры данных в ранних системах работы с данными поверхностей. К сожалению, многие типы аналитических задач трудно выполнимы на этом типе модели данных.

 


Рис. 6. Модель TIN. Векторное представление поверхности образуется соединением точек с известными значениями высоты

 

Не менее важным является деление моделей данных на векторные (рис. 7), оперирующие непосредственно с координатами объектов и слагающих его точек, и модели данных с делением пространства, где положение объекта или слагающего его элемента задается принадлежностью к некоторому дискрету, элементу делимости пространства. Наиболее распространенным видом моделей с делением пространства являются растровые модели данных (рис 7). Однако хочется подчеркнуть, что хотя их практическое значение и распространенность гораздо больше, чем у других моделей данных с делением пространства, вся эта группа очень разнообразна и представляет значительный теоретический интерес. Отдельные с первого взгляда экзотические модели данных из этой группы находят довольно неожиданное применение в комбинации с векторными и растровыми данными. Например, с их помощью могут строиться системы пространственного индексирования.

 


Рисунок 7. Векторная и растровая модели

 

Если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая - информацию о том, что расположено в той или иной точке территории. Это определяет основное назначение растровых моделей - непрерывное отображение поверхности.

В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства - пиксель (ячейка). Упорядоченная совокупность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообъекта.

Цифровая карта может быть организована как множество слоев (покрытий или карт-подложек) (рис 8).

Слои в ГИС могут быть как векторными, так и растровыми, причем векторные слои обязательно должны иметь одну из трех характеристик векторных данных, т.е. векторный слой должен быть определен как точечный, линейный или полигональный дополнительно к его тематической направленности.

Слои в ГИС являются типом цифровых картографических моделей, которые построены на основе объединения (типизации) пространственных объектов (или набора данных), имеющих общие свойства или функциональные признаки. Такими свойствами могут быть: принадлежность к одному типу координатных объектов (точечные, линейные полигональные); принадлежность к одному типу пространственных объектов (жилые здания, подземные коммуникации, административные границы и т. д.); отображение на карте одним цветом.

 

Рисунок 8. Организация цифровой карты в виде множества слоев

 

Совокупность слоев образует интегрированную основу графической части ГИС. Принадлежность объекта или части объекта к слою позволяет использовать и добавлять групповые свойства объектам данного слоя.

Данные, размещенные на слоях, могут обрабатываться как в интерактивном, так и в автоматическом режиме.

С помощью системы фильтров или заданных параметров объекты, принадлежащие слою, могут быть одновременно масштабированы, перемещены, скопированы, записаны в базу данных. В других случаях (при установке других режимов) можно наложить запрет на редактирование объектов слоя, запретить их просмотр или сделать невидимыми,

Многослойная организация электронной карты при наличии гибкого механизма управления слоями позволяет объединить и отобразить не только большее количество информации, чем на обычной карте, но существенно упростить анализ картографических данных с помощью селекции данных, необходимых для визуализации и механизма "прозрачности" цифровой карты.

Таким образом, разбиение на слои позволяет решать задачи типизации и разбиения данных на типы, повышать эффективность интерактивной обработки и групповой автоматизированной обработки, упрощать процесс хранения информации в базах данных, включать автоматизированные методы пространственного анализа на стадии сбора данных и при моделировании, упрощать решение экспертных задач.

Введение топологических свойств в графические данные ГИС, позволяет решать задачи, которые методами программного обеспечения САПР не реализуются. Это, например, возможность наложения слоев для получения нового слоя, который не является простым результатом наложения, а содержит новые объекты, полученные на основе методов пространственного анализа с использованием логических операций.

В целом сочетание методов топологии и послойного представления картографической информации богатые возможности анализа картографических данных.

Проявление современных тенденций в информационных технологиях оказывает влияние и на ГИС. Наиболее актуальным и перспективным с точки зрения эффективности обработки картографических данных и технологичности использования инструментальных средств для создания ГИС, является объектно-ориентированный подход (ООП). Смысл такого подхода состоит в том, что он позволяет применить объектную ориентацию для решения всего круга проблем, связанных с разработкой информационных систем. Использование ООП позволяет в полной мере использовать возможности объектно-ориентированных языков, существенно повышает качество разработки в целом и ее фрагментов, дает возможность создавать системы на основе стабильных промежуточных описаниях, делая системы более открытыми: снижает степень риска при разработке системы и создает более полное соответствие объектной модели реального мира восприятию человека.


Date: 2015-09-24; view: 1420; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию