Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Схема и цикл с полным промежуточным охлаждением и однократным дросселированием





 
 

В схему холодильной машины, представленной на рисунке 5.5. для промежуточного охлаждения включен специальный промежуточный сосуд со змеевиком. Цикл в S – T и h – Р диаграммах показан на том же рисунке. Перегретый пар холодильного агента после испарителя поступает на всасывание в ступень низкого давления, где сжимается в процессе 1 – 2 от давления кипения Ро до промежуточного давления Рпр. Сжатый пар из ступени низкого давления направляется в промежуточный охладитель, где охлаждается в процессе 2 – 3 внешней охлаждающей средой (водой или воздухом) до температуры, близкой к температуре конденсации, т.е. Т3 ≈ Тк. Затем предварительно охлажденный пар подается по трубопроводу в нижнюю часть промежуточного сосуда под слой жидкого холодильного агента, температура которой равна промежуточной температуре Тпр. Пузырьки пара поднимаются вверх (барбатируются) сквозь толщу жидкости и одновременно охлаждаются в процессе 3 – 4 за счет тепломассообмена с жидким холодильным агентом. Теоретически считается, что при этом происходит идеальный теплообмен, в результате которого пар хладагента охлаждается до промежуточной температуры, т.е. Т4 = Тпр. После промсосуда охлажденный пар всасывается ступенью высокого давления, где сжимается в процессе 4 – 5 от промежуточного давления Рпр до давления конденсации Рк. Сжатый горячий пар из ступени высокого давления поступает в конденсатор, в котором сначала охлаждается а потом конденсируется в процессе 5 – 6 при постоянном давлении конденсации Рк. Образовавшаяся жидкость перед промсосудом делится на два потока. Меньшая часть жидкости дросселируется во вспомогательном дроссельном устройстве в процессе 6 – 7 и поступает в промежуточный сосуд для пополнения и поддержания в нем постоянного уровня жидкого холодильного агента. Основной поток проходит по змеевику промежуточного сосуда и охлаждается в процессе 6 – 8 за счет теплообмена с жидким холодильным агентом, который находится в промсосуде. Температура охлажденной жидкости, выходящей из змеевика промсосуда, на (2-3) оС выше промежуточной температуры, т.е. Т8 = Тпр + (2 - 3) оС. Далее охлажденный жидкий хладагент дросселируется в основном дроссельном устройстве в процессе 8 – 9 от давления конденсации Рк до давления кипения Ро. После дросселирования холодильный агент поступает в испаритель, в котором жидкость кипит в процессе 9 - 1' за счет подвода теплоты от охлаждаемой среды. Пар образовавшийся при кипении перегревается в процессе 1' – 1, всасывается компрессором нижней ступени и цикл повторяется вновь.

Рисунок 5.5. Схема и цикл с полным промежуточным охлаждением и однократным дросселированием

Удельная холодопроизводительность цикла (количество теплоты, подведенной к 1 кг холодильного агента в испарителе):

qо = h1' – h9.

Удельная тепловая нагрузка конденсатора:

qк = h5 – h6.

Удельная работа сжатия в ступенях низкого и высокого давления:

lс.н = h2 – h1,, lс.в = h5 - h4.

Массовая производительность ступени низкого давления:

Массовая производительность ступени высокого давления Gа.в находится из теплового баланса промежуточного сосуда, который имеет вид:

;

Тогда имеем:

Полный тепловой поток в конденсаторе:

Теоретическая потребляемая мощность в низкой и высокой ступенях сжатия:

Общая потребляемая мощность в ступенях низкого и высокого давлений:

 

Nт = Nт.н + Nт.в

Теоретический холодильный коэффициент:

Схема и цикл с неполным промежуточным охлаждением и двукратным дросселированием.

 

А Б В

В такой холодильной машине применяется промежуточный сосуд без змеевика Ее схема и цикл в S – T и h – Р диаграммах представлен на рисунке 5.6. Пар холодильного агента после испарителя сжимается в ступени низкого давления в процессе 1-2 от давления кипения Ро до промежуточного давления Рпр. После компрессора сжатый пар предварительно охлаждается в промежуточном охладителе в процессе 2-3 до температуры, близкой к температуре конденсации, т.е. Т3 ≈ Тк. Далее предварительно охлажденный пар смешивается с холодильным паром выходящим из промежуточного сосуда в состоянии 10. В результате смешивания получается пар какого-то среднего состояния 4. После смешивания охлажденный пар всасывается ступенью высокого давления, где сжимается в процессе 4-5 от промежуточного давления Рпр до давления конденсации Рк. Пар холодильного агента после сжатия направляется в конденсатор, в котором охлаждается и конденсируется в процессе 5-6. Вся образовавшаяся в процессе конденсации жидкость дросселируется в первом дроссельном устройстве в процессе 6-7 от давления конденсации Рк до промежуточного давления Рпр. После дроссельного образуется влажный пар состояние 7 который поступает в промежуточный сосуд, в промежуточном сосуде происходит фазовое разделение потоков на пар процесс 7-10 и жидкость процесс 7-8. Пар как более легкая фаза поднимается вверх и выходит из промсосуда на всасывание в ступень высокого давления. Жидкость опускается в нижнюю часть промежуточного сосуда и выходит ко второму дроссельному устройству, где дросселируется в процессе 8-9 от промежуточного давления Рпр до давления кипения Ро. После дросселирования хладагент направляется в испаритель, в котором кипит в процессе 9-1′, отнимая теплоту от охлаждаемой среды. Пар, образовавшийся в результате кипения, перегревается в процессе 1′-1, всасывается компрессором низкого давления, сжимается и цикл повторяется вновь.


Удельная холодопроизводительность цикла qo (количество теплоты, подведенной к 1 кг холодильного агента при кипении в испарителе, Дж/кг):

qo = h1′ - h9

Удельный тепловой поток в конденсаторе, Дж/кг

qк = h5 – h6

Удельная работа сжатия в ступенях низкого и высокого давлений, Дж/кг

lс.н = h2 – h1 , lс.в = h5 – h4

Массовый расход хладагента в ступени низкого давления, кг/с

Массовый расход хладагента в ступени высокого давления находится из теплового баланса промежуточного сосуда, который имеет вид:

Gа.в

Полный тепловой поток в конденсаторе, Вт

Qк = qо • Gа.в

Теоретическая мощность в ступенях низкого и высокого давлений, Вт

Nт.н = lс.н • Gа.н , Nт.в = lс.в • Gа.в

Общая теоретическая мощность холодильной машины

Nт = Nт.н + Nт.в

Теоретический холодильный коэффициент

 







Date: 2015-09-24; view: 767; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию