Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






ВВедение





 

Химия изучает химическую форму движения материи, под которой понимают превращение одних веществ в другие. В результате химических процессов появляются новые вещества с новыми физическими и химическими свойствами. Химические превращения называются химическими реакциями.

Изучение характера протекания и динамики реакций является основной задачей химии, поскольку успешное ее решение позволяет предсказать и описать химический процесс, а также найти оптимальные условия его проведения. Все это необходимо для получения новых химических веществ, используемых в научных и практических целях. Это позволяет развивать и углублять основные представления химии как науки, а также целенаправленно использовать возможности химии для удовлетворения потребностей общества.

При изучении химических реакций используется ряд последовательных приближений.

Можно, сначала, изучать только начальное и конечное состояния системы (т.е. исходных веществ и продуктов реакции), не вдаваясь в тонкости происходящего. В этом заключается подход химической термодинамики.

В таком случае изучаются только наиболее общие закономерности протекания химических процессов. Такой подход не позволит узнать о химическом превращении самые тончайшие подробности, однако сможет ответить на важные, часто принципиальные, вопросы: возможно ли в принципе данное превращение и каковы его энергетические характеристики.

Именно рассмотрению указанных вопросов и посвящено пособие.

 

 

1. основные понятия

химической термодинамики

 

Прежде чем приступить к изучению предмета химической термодинамики, необходимо ввести ряд терминов и понятий, используемых в этом разделе.

Изучаемые химической термодинамикой объекты принято объединять понятием системы. Система - это совокупность изучаемых в данной задаче объектов, мысленно или физически отделенных от остального пространства. По своим взаимоотношениям с окружающим миром системы принято подразделять на открытые, закрытые и изолированные.

Открытыми называются системы, способные обмениваться с окружающим пространством, как веществом (иногда используют термин «масса»), так и энергией. Примером такой системы может служить открытый реакционный сосуд (колба, лабораторный стакан, пробирка и т.д.). Его можно охладить или нагреть, можно добавить в него какие-либо вещества или отобрать часть веществ оттуда. В процессе химического превращения определенная часть веществ может самопроизвольно покидать такую систему, например, испаряться.

Закрытыми называются системы, которые могут обмениваться с окружающим пространством только энергией, но не веществом. Примером такой системы может быть закрытый реакционный сосуд (реторта, химический реактор и т.д.). Нагревание, охлаждение, облучение светом такой системы возможно, изменение массы – нет.

Изолированными называются системы, неспособные обмениваться с окружающей средой ни массами, ни энергией. Абсолютно изолированных систем в природе, конечно, не бывает, но условия близкие к ним можно создать, например, в термосе или сосуде Дьюара.

Системы подразделяют также по фазовому составу. Определим сначала само понятие фазы.

Фаза - совокупность всех однородных частей системы, обладающих одинаковым составом и одинаковыми свойствами, отделенная от остальных частей системы поверхностью раздела.

Однофазиую систему называют гомогенной, многофазную систему – гетерогенной. Примером однофазной системы может служить воздух, несмотря на то, что он состоит из нескольких газообразных веществ. Однофазной системой является также водный раствор какого-либо вещества – в нем отсутствуют границы раздела фаз. Вода вместе с плавающим в ней льдом, напротив, является двухфазной системой, хотя обе фазы имеют одну химическую природу. Система останется двухфазной, даже если в воде будет плавать несколько кусочков льда: все они имеют одинаковый состав и свойства.

FПриведите самостоятельно примеры различных термодинамических систем.

Любая термодинамическая система характеризуется совокупностью так называемых термодинамических параметров.

Здесь надо пояснить, как описывает термодинамика все происходящие в системе явления. Термодинамические системы состоят обычно из очень большого числа частиц, находящихся к тому же в постоянном тепловом движении.

Описать происходящее в такой системе методами классической механики невозможно даже для самой простой ситуации. Вспомните, что один моль любого вещества состоит из 6,02·1023 молекул. Решить для каждой частицы уравнение движения (уравнения Ньютона), чтобы точно знать координаты и скорости каждой молекулы в любой момент времени, не под силу не только человеку, но и самому мощному компьютеру. Поэтому приходится удовлетвориться описанием системы с помощью тех величин, которые характеризуют ее состояние в целом, дают усредненную картину происходящего. Такой подход к решению задачи называется статистическим. Величины, описывающие состояние системы в целом, называются термодинамическими параметрами. Наиболее важными из них являются температура (), давление (р), объем (V), количество вещества (ν), концентрация вещества (С) и т.п.

F Вспомните из школьного курса физический смысл этих величин.

Те параметры, значение которых не зависит от количества вещества, называются интенсивными, ате, значение которых зависит от количества вещества - экстенсивными. К первому типу относятся, например, температура и давление, ко второму - объем.

Изменение одного из параметров ведет, как правило, к изменению состояния системы и, следовательно, других параметров. Состояние системы аналитически, т.е. в виде математического выражения, можно представить так называемым уравнением состояния, связывающим между собой все параметры системы. В общем виде уравнение состояния выглядит следующим образом:

f(p,V,Т,ν,...) = 0

Уравнения состояния позволяют проследить, как меняются параметры системы на всем пути ее перехода из одного состояния в другое. Конкретный вид уравнения состояния известен только для некоторых очень простых систем, например, уравнение Менделеева-Клапейрона, описывающее состояние идеального газа: pV = (m/M)RT

К сожалению, для большинства реальных систем подобные простые уравнения записать невозможно. Это приводит к необходимости введения понятия функций состояния. Эти величины также определяются через параметры состояния. Для каждого конкретного случая эти функции будут иметь свой вид, связывая термодинамические параметры в математические выражения. Они могут быть простыми или сложными, в зависимости от свойств данной системы и условий ее существования. Самая важная особенность функций состояния – изменение таких функций не зависит от пути, по которому система перешла из одного состояния в другое, а зависит только от начального и конечного состояний изучаемой системы. В термодинамике известно большое количество величин, обладающих свойствами функций состояния, но ниже будут рассмотрены только самые важные из них.

Фундаментальной функцией состояния является полная энергия системы Е, которая представляет собой сумму трех составляющих - кинетической энергии Екин. движущейся системы, потенциальной энергии Епот., связанной с воздействием на систему внешних сил (гравитационных, электростатических или иных) и внутренней энергии системы U:

Е = Екин.+ Епот.+U (1)

В термодинамике предполагают, что система находится в состоянии относительною покоя, а воздействие внешних сил пренебрежимо мало. Тогда полная энергия системы равна ее внутренней энергии. Точное значение внутренней энергии определить невозможно, потому что она складывается из большого числа различных взаимодействий, природа и величина которых до конца не изучена. Внутреннюю энергию системы определяют кинетическая и потенциальная энергия молекул, энергия взаимодействия атомов в молекулах, энергия взаимодействия электронов и протонов в атомах, из которых состоят молекулы, энергия взаимодействия частиц, составляющих атомное ядро и т.д. К счастью, для решения вопросов термодинамики абсолютное значение внутренней энергии знать не обязательно. Вполне достаточно определить только изменение внутренней энергии ΔU, происходящее при переходе системы из одного состояния в другое. Эти изменения происходят в соответствии с законом сохранения энергии, который для термодинамических систем формулируется, как первое начало термодинамики:

Q = ΔU + A (2)

Сообщенная системе теплота (Q) расходуется на приращение внутренней энергии (ΔU) и на совершение системой работы (А) против внешних сил. То есть, общий запас внутренней энергии остается постоянным, если отсутствует тепловой обмен с окружающей средой. В ходе процессов, протекающих в изолированной системе, возможно лишь перераспределение внутренней энергии между отдельными составляющими системы.

Теплота является мерой энергии, передаваемой от одного тела к другому за счет разницы температур этих тел. Эта форма энергии связана с хаотическим столкновением частиц соприкасающихся тел. При столкновениях частиц происходит передача энергии от более нагретого тела к менее нагретому. Переноса вещества при этом не происходит.

Работа является мерой энергии, передаваемой от одного тела к другому за счет перемещения частиц (тел) под действием каких-либо сил.

Теплота и работа измеряются в единицах энергии (джоуль, калория, эрг и т.п.).

Важно, что обе величины не являются функциями состояния и зависят от способа передачи энергии (пути перехода системы из одного состояния в другое).

Рассмотрим два, наиболее часто встречающихся, случая изменения состояния системы:

а) процесс может протекать при постоянном объеме (V = сonst);

б) процесс может протекать при постоянном давлении (р = сonst).

Первый случай. Если не происходит изменения объема, то не совершается и работа системы против внешних сил, так как отсутствуют какие-либо перемещения. Следовательно, математическое выражение первого начала термодинамики примет следующий вид:

Qv = ΔU = U2 - U1 (3)

Т.е. вся теплота, поступающая в систему или уходящая из системы, связана только с изменением внутренней энергии. Такая ситуация имеет место в закрытом сосуде, объем которого меняться не может. Подстрочный индекс "V" в формуле (3) показывает, что процесс протекает при постоянном объеме.

Для того чтобы разобрать второй случай, надо сначала получить выражение для работы системы против внешних сил. Будем считать, что имеется очень простая система: идеальный газ, находящийся в цилиндре с поршнем, который может перемещаться без трения (см. рис. 1).

 
 

 


Рисунок 1 -К расчету работы расширения.

Если давление газа равно р, а площадь сечения цилиндра S, то сила, действующая на поршень, будет равна, соответственно:

F = p·S (4)

Теперь, если поршень переместится на высоту h, то работа расширения, совершенная газом, будет равна:

A = p·S·h (5)

Так как произведение площади основания на высоту равно объему тела, то формулу можно изменить следующим образом:

A = p ·ΔV = p(V2 -V1) (6)

где V2 и V1 - объемы системы, соответственно, после и до изменения

состояния системы.

Полученную формулу подставим в алгебраическое выражение для первого начала термодинамики:

Qp = (U2 - U1) + p(V2 - V1) (7)

Раскроем скобки и сгруппируем величины, соответствующие конечному и начальному состояниям системы:

Op = (U2 + pV2) - (U1 + pV1) (8)

Введем новую функцию состояния, которая больше величины внутренней энергии на величину работы расширения, и называется энтальпией:

H = U + pV (9)

Таким образом, теплота, поступающая или уходящая из системы при постоянном давлении, равна изменению энтальпии системы:

Qp = H2 - H1 = ΔH (10)

Являясь функцией состояния, энтальпия зависит только от начального и конечного состояний системы. Описанный случай изменения состояния системы может иметь место в открытом реакционном сосуде. Все процессы будут протекать при постоянном атмосферном давлении, что отражено в уравнениях (7), (8), (10) нижним индексом у символа теплоты.

Жидкие и твердые вещества расширяются или сжимаются незначительно при изменении состояния системы. Поэтому, при работе с конденсированными системами (жидкими или твердыми), изменением объема можно пренебречь. Работа в этом случае совершаться не будет, и, следовательно, тепловой эффект реакции подсчитывается как для систем при постоянном объеме, т.е., он равен изменению внутренней энергии.

Тепловые эффекты химических реакций и фазовых превращений изучаются в разделе химической термодинамики, называемом термохимией.

Date: 2015-09-18; view: 324; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию