Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Фракции частиц при гранулометрическом анализе почв





В почвах и породах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует.

Исторически первая классификация фракций предложена А. Аттербергом в 1912 и была основана на изучении физических свойств монофракциальных смесей. Их анализ показал резкие качественные различия, в частности, в липкости при достижении размеров 0,002, 0,02 и 0,2 мм.

Шкала Аттерберга легла в основу более новых зарубежных классификаций. В СССР и России была принята несколько иная классификация Н. А. Качинского.

Шкала Качинского
Граничные значения, мм Название фракции
до 0,000001 Истинные растворы
0,000001—0,0001 Коллоиды
0,0001—0,0005 Тонкий ил
0,0005—0,001 Грубый ил
0,001—0,005 Мелкая пыль
0,005—0,01 Средняя пыль
0,01—0,05 Крупная пыль
0,05—0,25 Тонкий песок
0,25—0,5 Средний песок
0,5—1 Крупный песок
1—3 Гравий
больше 3 Каменистая часть почвы

Вместе с этими в классификации Качинского выделяются фракции физического песка и физической глины, соответственно, крупнее и мельче 0,01 мм.

2. Структура горных пород определяется размерами, количественным соотношением минеральных частиц, взаимодействием частиц между собой и с другими компонентами горных пород. Под текстурой горных пород понимают пространственное расположение и соотношение минеральных частиц в породах. Структуру и текстуру горных пород необходимо рассматривать совместно, и некоторые исследователи объединяют структуру и текстуру грунтов понятием «строение грунтов», выделяя макро-, мезо- и микростроение грунтов. Под макростроением понимают структуру и текстуру грунтов, различаемые невооруженным глазом или с помощью лупы (например, минеральные частицы размерами более 2 мм, макропористость и видимая слоистость грунтов). Мезостроение грунтов изучается под микроскопом (например, минеральные частицы размерами более 0,001 мм, микроагрегаты глинистых частиц и пространственное расположение этих частиц) Микростроение грунтов изучается с помощью электронного микроскопа (например, минеральные частицы размерами менее 0,001 мм, детали структуры и текстуры грунтов).

На строение грунтов оказывают влияние размеры частиц, их удельная поверхность, характер структурных связей, минеральный состав грунтов и условия формирования (наличие давления, водно-солевой состав и состояние воды и т.п.). При изменении этих факторов происходит постепенное изменение строения грунтов, что приводит к изменению характера структурных связей и взаимодействия между компонентами грунтов.

Первичные минеральные частицы, образующие структуру грунтов, характеризуются гранулометрическим составом, а структурные элементы из агрегированных частиц - агрегатным составом.

По текстурной характеристике выделены микроагрегаты и микроблоки соответственно с беспорядочной и ориентированной группировкой частиц.

Для засоленных глинистых грунтов результаты определения гранулометрического и микроагрегатного составов существенно различаются. Это объясняется тем, что соли в таких грунтах образуют агрегаты, центрами которых являются минералы солей. При разрушении агрегатов частиц увеличивается число глинистых частиц.

3. Пластичность — это способность грунта под воздействием внешних усилий изменять форму (деформироваться) без разрыва сплошности и сохранять приданную ему форму после того, как действие внешней силы устранено.
При инженерно-геологических исследованиях обычно в качестве показателей пластичности используют влажность предела текучести (или верхний предел пластичности) и влажность предела раскатывания (нижний предел пластичности). Интервал влажности между пределами пластичности характеризуется числом пластичности. Кроме того, по показателям пластичности и естественной влажности судят о консистенции грунта. Пределы и число пластичности косвенно характеризуют минералогический состав и дисперсность грунта. Существуют различные методы определения пределов пластичности:
1) методы для определения верхнего предела пластичности с помощью конуса и нижнего предела по влажности на границе раскатывания грунта в шнур (ГОСТ 5183—64 и ГОСТ 5184—64);
2) конусные методы для определения верхнего и нижнего пределов пластичности.
Конусные методы позволяют определить предельное напряжение сдвига.
Величина предельного напряжения сдвига не зависит от нагрузки на конус и угла при вершине конуса.
Для определения пределов пластичности рекомендуется использовать пластометр Ребиндера, конус Бойченко и др.
Наиболее распространенными являются классификации связных грунтов по числу пластичности и показателю консистенции согласно СНиП П-Б.1-62.
Показатели пластичности и естественной влажности характеризуют консистенцию грунта.
По показателю консистенции связные грунты классифицируют следующим образом:
Супеси: твердые, пластичные, текучие
Суглинки и глины: твердые, полутвердые, тугопластичные, мягкопластичные,
текучепластичные, текучие.

4. Усадка грунтов. Усадкой называют свойство влажных глинистых грунтов уменьшаться в объеме при высыхании. При усадке грунта он переходит в твердое или полутвердое состояние; в нем появляются трещины, нарушаются связи жесткого структурного сцепления; прочность грунта в толще ослабляется (сс > 0). С пределом усадки увязывают наблюдаемое при высыхании грунта изменение его цвета (посветление).

Размокание. Проба грунта на размокание. Для инженерно-геологической характеристики грунта весьма показательна его способность к размоканию. Сущность испытания заключается в наблюдении за оставшейся частью образца, помещенного в воде на металлической сетке. Для этого испытания существуют специальные приборы, действующие на принципе весов или поплавка

Набухание и усадка. Грунты, увеличивающиеся в объеме при повышении их влажности, называются набухающими. При набухании происходит подъем поверхности. Набухание происходит за счет увеличения толщины водных пленок, окружающих частицы. При снижении влажности в этих грунтах они уменьшают свой объем и дают усадку.

Относительное набухание определяется в одометре и представляет собой отношение разности высот образца после набухания и в природном состоянии к высоте ненабухающего образца, обжатого природным давлением. У "ненабухающих" грунтов это отношение менее 0,04, сильнонабухающими называются грунты, если оно более 0,12. Давление набухания соответствует давлению, возникающему в грунте в одометре, если ему не дать увеличиваться в объеме.

Подъем поверхности основания из набухающих грунтов определяют методом послойного суммирования. В основании фундамента учитывается противодействие от веса незамоченного грунта. На нижней границе зоны набухания принимается условие, при котором суммарное вертикальное напряжение от веса грунта и внешней нагрузки равно давлению набухания.

5. Крупнообломочные грунты состоят из несцементированных кусков скальных и полускальных пород; обычно содержат более 50 % обломков пород размером свыше 2 мм. Свойства грунтов 1 класса определяются свойствами мелкоземной части (песка, глины, пыли).

II класс - грунты с несовершенным каркасом, содержащие обломочных частиц от 10 до 65 %.

Свойства крупнообломочных грунтов II класса определяются как свойствами содержащегося в них мелкозема, так и свойствами обломочных частиц. В таких грунтах влияние обломочных частиц тем больше, чем выше их содержание. При небольшом количестве обломков последние не соприкасаются и «плавают» в мелкоземе, а при увеличении их содержания обломочные частицы, соприкасаясь друг с другом, образуют структуры, приближающиеся к контактным.

III класс - грунты каркасные, содержащие обломочных частиц более 65 %.

Грунты этого класса характеризуются наличием контактов между обломочными частицами, что предопределяет их доминирующее влияние на физико-механические свойства грунтов.

Каркасность структуры грунтов этого класса в значительной степени зависит от состояния глинистого мелкозема.

Крупнообломочные грунты II класса следует подразделять на две категории: связные, если заполнитель (размером мельче 2 мм) - глинистая или суглинистая порода, и сыпучие, если заполнитель - песчаный грунт.

Рассматриваемые грунты классифицируются также по свойствам скелетных фракций:

грунты с водостойкой скелетной частью (коэффициент размягчаемости выше 0,78), которая может быть представлена обломками изверженных и метаморфических пород, не изменяющих свои прочностные свойства при увлажнении, - гранит, базальт, диорит и др.;

грунты с неводостойкой скелетной частью (коэффициент размягчаемости ниже 0,75), включающей обломки легковыветривающихся, размягчающихся при увлажнении горных пород, - мел, опока, мергель, алевролит, аргиллит и др.

Физико-механические свойства крупнообломочных грунтов определяются их гранулометрическим составом и показателями плотности-влажности.

Повышение содержания глинистого заполнителя в составе крупнообломочного грунта приводит к снижению его прочностных (угол внутреннего трения j, сцепление С) и деформативных (модуль упругости Е) характеристик (табл. 1, 2).

Модуль упругости исследуемых грунтов, содержащих более 25 % глинистого мелкозема, практически не зависит от прочности обломочной составляющей и определяется их гранулометрическим составом и кон систенцией мелкозема, находящегося в контакте с обломочными частицами.

 

Высокие значения модуля упругости крупнообломочных грунтов, получаемые при относительно низкой влажности содержащегося в них мелкозема, снижаются при повышении влажности и увеличении количества мелкозема и не могут вследствие этого служить надежной характеристикой для рассматриваемых грунтов.

Динамические модули упругости для крупнообломочных грунтов превосходят по величине статические - Е ст. Однако с увеличением влажности грунта разница в значениях указанных модулей упругости уменьшается и при влажности глинистой составляющей 0,7 - 0,8 W т отношение приближается к 1 (см. табл. 2).

Крупнообломочные грунты обладают высокой водопоглощающей способностью, интенсивность которой уменьшается с увеличением начальной влажности глинистого заполнителя. Наибольшей скоростью водопоглощения обладают крупнообломочные грунты с каркасной структурой и с несовершенным каркасом, содержащие менее 40 - 50 % мелкозема.

Крупнообломочные грунты II и III классов, содержащие при уплотнении глинистый мелкозем (размером мельче 0,05 мм) в твердой и полутвердой консистенции, обнаруживают склонность к просадочным явлениям и снижению первоначальной прочности при увлажнении.

Степень снижения прочностных свойств крупнообломочных грунтов оценивается коэффициентом сдвигоустойчивости, определяемым по отношению сопротивляемости грунта сдвигу после увлажнения и его начальной (до увлажнения) сдвиговой прочности (приложение 2).

Крупнообломочные грунты, содержащие глинистый мелкозем в твердой или полутвердой консистенции, характеризуются наименьшим коэффициентом сдвигоустойчивости, причем его величина снижается в процессе водонасыщения по мере увеличения в смеси содержания глинистого мелкозема (рис. 2).

Наибольшей просадочностью характеризуются крупнообломочные грунты, содержащие от 15 до 40 % глинистого мелкозема в твердой или полутвердой консистенции (рис. 3).

Просадочность крупнообломочного грунта выражается через модуль просадки l пр (мм/м) (приложение 3).

Снижение просадочных деформаций насыпей, сооружаемых из крупнообломочных грунтов с каркасной или несовершенной каркасной структурой, достигается путем эффективного уплотнения грунтов при повышенных нагрузках и влажности глинистого мелкозема.

 

6. Песчаный грунт более чем на половину состоит из частиц песка размером меньше 5 мм, форма которых приближена к шарообразной. Пространство между отдельными песчинками называется порами, они заполняются водой и воздухом. В отличие от глинистых песчаные грунты имеют гораздо более низкую пористость – от 0,2 до 0,5, они хуже удерживают в себе влагу. Размер пор достаточно большой для того, чтобы капиллярные силы притяжения не могли связывать песчинки, поэтому песчаный грунт является несвязным, то есть он рассыпается. В сухом состоянии он совершенно не держит форму, слепленный из песка шар рассыпается сам собой. Насыщенный влагой песок может удерживать форму, но при малейшем давлении тоже рассыпается.

Песчаные грунты удерживают в себе меньше влаги, и, благодаря этому свойству, они в меньшей степени подвержены морозному пучению, в большинстве случаев их можно считать непучинистыми. Это очень большое достоинство: при возведении фундамента на таком грунте глубина промерзания не имеет значения и даже мелкозаглубленный фундамент будет абсолютно устойчивым.

Главная характеристика песчаного грунта – его несущая способность – зависит от содержания в нем влаги и от его степени уплотнения:

  • чем больше в нём содержится воды, тем он слабее
  • чем сильнее уплотнен, тем больше несущая способность.

Все песчаные грунты хорошо и быстро уплотняются под действием нагрузки, их осадка происходит быстро. По степени уплотнения они делятся на плотные и средней плотности. Плотным можно считать такой грунт, который находится на глубине 1,5 м и более: под постоянным давлением вышележащих слоев он максимально уплотнился и является хорошим основанием для фундамента. Грунт средней плотности – это тот, который находится выше 1,5 м и тот, который был уплотнен искусственно. Он имеет чуть меньшую несущую способность и больше подвержен осадке.

Песчаные грунты разделяют на группы в зависимости от крупности песчинок.

  • Гравелистый песок – самый крупный, он состоит из песчинок размером от 0,25 мм до 5 мм, и имеет высокую несущую способность: плотный гравелистый грунт более 6 кг/см2, гравелистый грунт средней плотности – 5 кг/см2.
  • Крупный песок имеет размер частиц от 0,25 мм до 2 мм и показывает другие свойства: плотный крупный песок имеет несущую способность 5-6 кг/см2, средней плотности – 4 кг/см2. Свойства крупного и гравелистого песчаных грунтов практически не зависят от наличия влаги и ее количества, их несущая способность остается постоянной.
  • Средний песок имеет песчинки размером от 0,1 мм до 1 мм, его несущая способность в плотном состоянии 4-5 кг/см2, в состоянии средней плотности 3-4 кг/см2. При насыщении влагой такой грунт снижает свою несущую способность еще на 1 кг/см2.
  • Мелкий песок (или пылеватый) имеет размер частиц меньше 0,1 мм и по своим свойствам уже приближается к глинистому грунту: максимальная несущая способность в потном состоянии 3 кг/см2, при средней плотности – 2,5 кг/см2. При насыщении влагой его прочность падает до 1 кг/см2.

Таким образом, самым лучшим основанием для фундамента будет гравелистый или крупный песок, который обеспечивает отличную несущую способность и практически не теряет своих свойств при увлажнении.

7. Свойства пылевато-глинистых грунтов находятся в большой зависимости от влажности. Если в талом грунте содержится только прочносвя-занная вода, то грунт находится в твердом состоянии. При наличии рыхлосвязанной воды грунт становится пластичным. При свободной воде в порах грунт переходит в текучее состояние.

Таким образом, при насыщении водой пылевато-глинистый грунт вначале размягчается, потом переходит в пластичное и, наконец, текучее состояние.

Пластичность — это способность грунта деформироваться под действием внешних усилий без разрыва сплошности и сохранять форму после прекращения действия этих усилий. Пылевато-глинистые грунты находятся в пластичном состоянии в определенном диапазоне влажности, границы которого называются пределами пластичности: w P—нийний предел пластичности (предел раскатывания) соответствует влажности, ниже которой грунт переходит в твердое состояние; wL— верхний предел пластичности (предел текучести) отвечает влажности, выше которой грунт переходит в текучее состояние.

Особенностью грунтов как пористых тел является их способность фильтровать воду. Фильтрация зависит от степени уплотнения грунтов. Водопроницаемость характеризуется коэффициентом фильтрации К.

Основными пааметрами механических свойств грунтов являются прочность и деформационные характеристики грунтов: угол внутреннего трения ф, удельное сцепление с, модуль деформации Е и предел прочности на одноосное сжатие скальных грунтов Rc.

Date: 2015-09-05; view: 1197; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию