Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Интегрирование методом замены переменной
Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных является метод замены переменной. Сущность его заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому, который сравнительно легко берется непосредственно. Существуют два варианта этого метода. а) Метод подведения функции под знак дифференциала По определению дифференциала функции Переход в этом равенстве слева направо называют "подведением множителя Теорема об инвариантности формул интегрирования Всякая формула интегрирования сохраняет свой вид при подстановке вместо независимой переменной любой дифференцируемой функции от нее, т.е., если
где Доказательство: Из того, что
Отсюда Пусть требуется вычислить интеграл
Тогда
т.е. вычисление интеграла Пример 1. Пример 2. Пример 3. Пример 4. Пример 5. Пример 6. Пример 7. Пример 8. Пример 9. Пример 10. Пример 11.
Приведем далее примеры вычисления интегралов, которые нам понадобятся в теории интегрирования рациональных дробей. Пример 12. Найти I= D Представим подынтегральную функцию в виде:
Следовательно, I= = Таким образом, Пример 12а. Найти I= D Так как следовательно I= Пример 13. Найти D Для того, чтобы свести этот интеграл к табличному, разделим числитель и знаменатель подынтегрального выражения на
Мы подвели постоянный множитель
Вычислим также интеграл, который имеет важное значение при интегрировании иррациональных функций. Пример 14. Найти I= D Имеем Итак, Представленные примеры иллюстрируют важность умения приводить данное дифференциальное выражение В этих примерах были проведены преобразования дифференциала, такие как
часто используемые при нахождении интегралов. В таблице основных интегралов предполагалось, что x есть независимая переменная. Однако, эта таблица, как следует из изложенного выше, полностью сохраняет свое значение, если под x понимать любую непрерывно дифференцируемую функцию от независимой переменной. Обобщим ряд формул таблицы основных интегралов. 3а. 4. 5. 6. 7. 8. 9.
Операция подведения функции Пример 15. Найти I= D Произведем замену переменной по формуле Заменив u его выражением I= Выполненное преобразование эквивалентно подведению под знак дифференциала функции Пример 16. Найти D Положим
Пример 17. Найти D Пусть
В заключение отметим, что разные способы интегрирования одной и той же функции иногда приводят к функциям, различным по своему виду. Это кажущееся противоречие можно устранить, если показать, что разность между полученными функциями есть постоянная величина (см. теорему, доказанную на лекции 1). Примеры: а)
Результаты отличаются на постоянную величину, и, значит, оба ответа верны. б) I=
Легко убедиться, что любые из ответов отличаются друг от друга только на постоянную величину. б) Метод подстановки (метод введения новой переменной) Пусть интеграл
Формула (3) называется формулой замены переменной в неопределенном интеграле. Как правильно выбрать подстановку? Это достигается практикой в интегрировании. Но можно установить ряд общих правил и некоторых приемов для частных случаев интегрирования. Правило интегрирования способом подстановки состоит в следующем. 1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно). 2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену. 3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной. 4. Производят замену под интегралом. 5. Находят полученный интеграл. 6. Производят обратную замену, т.е. переходят к старой переменной.
Проиллюстрируем правило примерами. Пример 18. Найти D Положим
= Пример 19. Найти D Вычислим интеграл
Этот интеграл найдем подведением
Пример 20. Найти D Применим подстановку Эйлера:
Таким образом, имеем Студенты прозвали этот интеграл «длинным логарифмом». Иногда вместо подстановки Пример 21. Найти D Полагая t=ex , получаем
Пример 22. Найти D Воспользуемся подстановкой Следовательно, В ряде случаев нахождение интеграла основывается на использовании методов непосредственного интегрирования и подведения функций под знак дифференциала одновременно (см. пример 12). Проиллюстрируем этот комбинированный подход к вычислению интеграла, играющего важную роль при интегрировании тригонометрических функций. Пример 23. Найти D Имеем = Итак, Другой подход к вычислению этого интеграла:
Пример 24. Найти Заметим, что удачный выбор подстановки обычно представляет трудности. Для их преодоления необходимо овладеть техникой дифференцирования и хорошо знать табличные интегралы. Date: 2015-09-02; view: 3593; Нарушение авторских прав |