Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Амплитуда при резонансе





а резонансная частота

Рис.16.1

Резонанс играет большую роль в природе, науке и технике. Резонанс сооружений и машин при периодических внешних воздействиях может являться причиной катастроф. Чтобы избежать резонансного воздействия, подбирают соответствующим образом свойства системы или используют успокоители колебаний, основанные на явлении антирезонанса. В радиотехнике благодаря резонансу можно отделить сигналы одной (нужной) радио- или телестанции от всех других.

Свободные колебания с вязким сопротивлением.

Существуют устройства (демпферы), которые создают силу пропорциональную относительной скорости (рис.17). Коэффициент пропорциональности называется коэффициентом демпфирования или коэффициентом вязкого сопротивления.

Рис.17

 

Дифференциальное уравнение движения точки с массой m, закрепленной на упругом элементе и демпфере имеет вид:

Начальные условия имеют вид: t=0,

Характеристическое уравнение имеет вид: .

Корни характеристического уравнения равны:

Рассмотрим возможные решения:

1-й случай

Решение имеет вид:

- условная амплитуда затухающих колебаний;

Рис.18

 

- круговая или циклическая частота затухающих колебаний. Измеряется в рад/сек.

- фазовый угол (или просто фаза).

- период затухающих колебаний (рис.18).

- частота колебаний (1 колеб/cек=1 Гц)

- логарифмический декремент колебаний.

Материальная точка совершает гармонические колебания с частотой и амплитудой, величина которой все время убывает.

Движение изображающей точки на фазовой плоскости показано на рис. 19.

Рис.19

 

2-й случай

Решение имеет вид:

Материальная точка совершает затухающее неколебательное движение (рис.39).

Рис.20

 

3-й случай (два одинаковых корня)

Решение имеет вид:

Материальная точка так же совершает затухающее неколебательное движение (рис.20).

 







Date: 2015-08-15; view: 664; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию