Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Усеченное нормальное распределение
Известно, что корректность использования классического нормального распределения наработки, достигается при Т0 3S. При малых значениях Т0 и большом S, может возникать ситуация, когда ПРО f(t) «покрывает» своей левой ветвью область отрицательных наработок (рис. 4). Рис.6.4
Таким образом, нормальное распределение являясь общим случаем распределения случайной величины в диапазоне (- ; ), лишь в частности (при определенных условиях) может быть использовано для моделей надежности. Усеченным нормальным распределением называется распределение, получаемое из классического нормального, при ограничении интервала возможных значений наработки до отказа. В общем случае усечение может быть: · левым – (0; ); · двусторонним – (t1 , t2). Смысл усеченного нормального распределения (УНР) рассмотрен для случая ограничения случайной величины наработки интервалом (t1 , t2). Плотность УНР (t) = c f(t), где c – нормирующий множитель, определяемый из условия, что площадь под кривой (t) равна 1, т. е. Откуда где Применяя переход от случайной величины Т = {t} к величине X = {x}: x2 = (t2 – Т0)/S; x1 = (t1 – Т0)/S, получается поэтому нормирующий множитель c равен: Поскольку [ (x) (x2) - (x) (x1)] < 1, то c > 1, поэтому (t) > f(t). Кривая (t) выше, чем f(t), т. к. площади под кривыми (t) и f(t) одинаковы и равны 1 (рис. 5). Рис. 6.5 Показатели безотказности для УНР в диапазоне (t1 , t2): УНР для положительной наработки до отказа – диапазон (0; ) имеет ПРО (t) = c0 f(t), где c0 – нормирующий множитель определяется из условия: и равен (аналогично предыдущему): Показатели безотказности УНР (0; ) Изменение нормирующего множителя c0 в зависимости от отношения Т0 /S приведено на рис. 6. Рис. 6.6. При Т0 = S, Т0 / S = 1 c0 = max ( 1,2). При Т0 / S 2,5 c0 = 1,0, т.е. (t)(t) = f(t). Контрольные вопросы и задачи: 1. Объясните почему распределение Гаусса называется нормальным? 2. Поясните на изменении кривой плотности распределения отказов влияние параметров распределения: матожидания и дисперсии? 3. Приведите расчетные выражения для показателей безотказности, определенные через табличные функции: f(x), F(x) и (x)? 4. При каких условиях корректно использовать классическое нормальное распределение, и в каких случаях целесообразно применять усеченные нормальные распределения? 5. Приведите расчетные выражения показателей безотказности для усеченного «слева» нормального распределения? 6. Наработка до отказа серийно выпускаемой детали распределена нормально с параметрами: Т0 = M(T) = 104 час, S = S (T) = 250 час. Определить: 1) вероятность того, что при монтаже прибора в него будут поставлены детали, наработка до отказа которых будет находиться в интервале [ 5000, 9000 час]; 2) вероятность того, что при монтаже прибора в него будут поставлены детали, наработка до отказа которых будет находиться в интервале [ Т0 - 3S, Т0 + 3S ]; 3) вероятность того, что безотказно проработав до момента времени 5000 час, деталь безотказно проработает и до 9000 час? Ответы: 1) 0.00003, 2) 0.9974, 3) 0.99997. 7. Комплектующая деталь, используемая при изготовлении устройства, по данным поставщика этой детали имеет нормальное распределение наработки с параметрами: Т0 = 4 · 103 час, S = 800 час. Определить интересующую конструктора прибора: 1) наработку до отказа, соответствующую 90% надежности детали; 2) вероятность того, что при монтаже деталь имеет наработку, лежащую в интервале [ 2.5 · 103, 3 · 103 ]; 3) вероятность того, что при монтаже деталь имеет наработку, большую, чем 2.5 103 час? Ответы: 1) 2974.4, 2) 0.0755, 3) 0.9699. Глава 7.ЗАКОНЫ РАСПРЕДЕЛЕНИЯ НАРАБОТКИ ДО ОТКАЗА: ЭКСПОНЕНЦИАЛЬНЫЙ, ЛОГНОРМАЛЬНЫЙ И ГАММА-РАСПРЕДЕЛЕНИЕ Date: 2015-08-06; view: 595; Нарушение авторских прав |