![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Сложение световых волн
1. Сложение однонаправленных волн. Пусть на оси ОХ находятся два источника S 1 и S 2 в точках с координатами х 1 и х 2 (рис.81). В момент времени t = 0 источники начали излучать две монохроматические одинаковой частоты w линейно поляризованные в одной плоскости световые волны.
Здесь v - скорость распростране-ния волны. Электрическое и магнитное поля подчиняются принципу суперпозиции. Поэтому при наложении волн в любой точке А их напряженности складываются. Здесь j = w(х 2 – х 1 )/v - сдвиг фаз между волнами. Помимо параметров волны w и v на него влияет расстояние между источниками D = х 2 – х 1. Сдвиг фаз определяет амплитуду Е а суммарной волны Если разность фаз в данной точке пространства постоянна, то амплитуда результирующего колебания в этой точке постоянна. В зависимости от разности фаз j в точке будет наблюдаться или усиление интенсивности света (j = 0, Е а = Е а1 + Е а2), или ослабление (j = p, Е а = Е а1 – Е а2). При равенстве амплитуд Е а1 = Е а2 и при j = p, Е а = Е а1 – Е а2 = 0. Происходит полное гашение света. 2. Явление сложения волн с одинаковой частотой и постоянной во времени, достаточном для наблюдения, разностью фаз, при котором происходит перераспределение интенсивности в пространстве, называется интерференцией. Интерференционная картина наиболее контрастна, когда амплитуды складываемых волн одинаковы. 3. Когерентность (от лат. cohaerens – находящийся в связи) – согласованность во времени нескольких колебательных или волновых процессов, проявляющаяся при их сложении. Естественные источники света состоят из огромного количества хаотически вспыхивающих и потухающих излучателей – атомов и молекул. Через каждую точку оптически прозрачной среды, окружающей источник, проходят друг за другом цуги волн, испущенные разными атомами и имеющие разные амплитуды, фазы и частоты. Поэтому сделать два не лазерных источника света когерентными принципиально невозможно. Получение когерентных лучей от естественных источников возможно путем расщепления луча от одного источника и создания между ними постоянного сдвига фаз. В этом случае лучи повторяют себя во всех деталях и потому могут интерферировать между собой. Но при создании разности фаз надо помнить, что цуг волн, испущенный отдельным атомом, имеет конечную протяженность вдоль луча. При длительности испускания 10–11 ¸ 10–8 с эта протяженность не превышает 1 ¸ 3 м. Поэтому можно сказать, что через каждые 10-8 с волна, излучаемая даже одним атомом меняется. Но даже отдельный цуг не есть отрезок синусоиды. Фаза колебания вектора Е на его протяжении непрерывно изменяется. Поэтому «голова» цуга не когерентна его «хвосту». Время t, в течение которого фаза колебаний в световой волне, измеряемая в постоянной точке пространства, изменяется на p, называется временем когерентности. Расстояние сt, где с – скорость света, измеренное вдоль направления распространения волны, называется длиной когерентности. Свет разных источников имеет длину когерентности от нескольких микрометров до нескольких километров:
– спектры разреженных газов, сt» 0,1 м, – лазерное излучение, сt» 1 ¸ 2 км. Для описания когерентных свойств волны в плоскости, перпендикулярной направлению ее распространения, применяют термин простран-ственная когерентность. Она определяется площадью круга диаметром l, во всех точках которого разность фаз не превышает величины p. Пространство когерентности у точечного источника естественного света приближается к объему усеченного конуса длинной несколько мкм и диаметром основания несколько мм (рис.83). С удалением от источника оно увеличивается. 4. Нормально лучам от естественного источника света устанавливается экран Э1 с узкой щелью S. Эта щель играет роль точечного источника света S. Распространяющаяся от S цилиндрическая волна возбуждает в щелях S 1 и S 2 экрана Э2 когерентные колебания. Поэтому волны, распростра-няющиеся от щелей S 1 и S 2, при взаимо-действии дают на экране Э3 интер-ференционную картину в виде системы параллельных щелям полос (рис.84). Хотя на практике метод Юнга не применяется из-за слабой освещенности экрана Э3, он удобен для теоретического изучения двухлучевой интерференции с целью получения количественных оценок. Для этого представим схему Юнга в виде, показанном на рис.85. Если S 1 и S 2 – когерентные источники света, излучающие в одинаковой фазе, то в любую произвольную точку А экрана Э3 будут приходить волны с разностью хода D = l 2 – l 1. Полагая на рисунке а<<L, из приближенного условия D /а = yçL получаем величину разности хода, D = аyçL. Она набегает тем больше, чем дальше точка наблюдения А от оси симметрии ОХ интерференционной картины (координата y), чем больше расстояние между щелями и чем ближе экран Э3 к щелям (расстояние L). Максимум освещенности будет в тех точках экрана, где D составляет целое число волн, а минимум освещенности - где D составляет нечетное число полуволн.
Здесь k – номер полосы. При малых углах j полосы располагаются равномерно. Расстояние между соседними темными или соседними светлыми полосами равно
Оно тем больше, чем меньше расстояние а между источниками и чем больше расстояние L от источников до экрана. При а = 1 мм, L = 1 м, D у = 0,5×10–6×1 ç 10–3 = 0,5 мм для зеленых лучей. 5. Контрастность интерференционной картины зависит от протяженности источника света S и от степени монохроматичности света. а. Влияние немонохроматичности света. В том случае, когда интерферируют немонохроматичные волны, максимумы на экране для разных длин волн не совпадают. В результате интерференционная картина размывается. Она полностью смазывается, когда на k -ый максимум волны с длиной l + D l приходится k + 1-й максимум волны с длиной l.
Все пространство минимума для волны l занято максимумами с длинами от l до l + D l.
Сжимая с помощью светофильтров спектральный интервал, можно увеличить число и контрастность наблюдаемых полос. б. Влияние протяженности источника. Пусть ширина щели S равна b (рис.86). Чтобы щели S 1 и S 2 излучали в одной фазе, нужно, чтобы лучи, приходящие в каждую щель от разных точек источника S, имели малую разность хода D, не более четверти длины волны. Угол w обычно не больше 1°. Поэтому ограничение по ширине щели можно записать так: При а = 1 мм, d = 1 м, l = 0,6×10–6 м, b< 0,6×10–6×1 ç 2×10–3 = 0,3×10–3 м = 0,3 мм. Для получения хорошей контрастности эта величина должна быть уменьшена еще в 3-4 раза. 6. а. Бизеркала Френеля, 1816 г. (рис.87). Свет от источника, заключенного в светонепроницаемый кожух, через отверстие в нем попадает расходящимся пучком на два плоских зеркала. Угол между зеркалами a» 179°.
Достоинство метода – хорошая освещен-ность, недостаток – сложность юстировки зеркал на оптической скамье. б. Бипризма Френеля, 1819 г. (рис.88). Достоинства – хорошая освещенность и простота юстировки, недостаток – требуется специальная бипризма, изделие оптической промышленности. Здесь S 1 и S 2 – мнимые изображения источника света S.
г. Зеркало Ллойда, 1837 г. (рис.90). Прямой пучок от источника S интерферирует с пучком, отраженным от зеркала. Здесь S – освещенная щель, S 1 – ее мнимое изображение. Date: 2015-08-06; view: 1025; Нарушение авторских прав |