Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теплогенератор на морозоустойчивых жидкостях





В качестве рабочей жидкости в серийном вихревом теплогенераторе Потапова "ЮСМАР" используется обыкновенная вода. И не только потому, что вода - самое удивительное вещество в природе, аномальные свойства которого позволяют наиболее эффективно превращать внутреннюю энергию вещества в энергию излучений при вращении. А ещё и потому, что вода - самая дешёвая и доступная жидкость на Земле. Кроме того, она не горюча, а потому наиболее приемлема в отношении пожаробезопасное.
Однако у неё есть серьезный недостаток - на морозе вода замерзает, что ведёт к разрыву сварных швов в аппаратах, заполненных водой, от аномального расширения льда при его кристаллизации. И если вихревой теплогенератор, заполненный водой, установить не в теплом помещении, а на открытом воздухе или в помещении, где возможно снижение температуры до отрицательных величин, то стоит оставить его на ночку на морозе невключенным, как наутро он окажется непригодным к эксплуаации и потребует ремонта.
Но ведь водородные связи, благодаря которым, как мы думаем, в вихревой трубе столь эффективно идёт превращение внутренней энергии воды в тепло, бывают не только в воде. Они существуют и в некоторых других веществах, в первую очередь Е органических. Например, в минеральных маслах и других углеводородных жидкостях. Масла уже не замерзают на морозе, и многие из них имеют температуру кипения большую, чем у воды. Да и электроизоляционные свойства у них много выше, чем у воды. А это значит, что накопление зарядов в кавитационных пузырьках в них может происходить эффективнее, чем в воде с её довольно высокой электропроводностью. Все это указывает на возможность использования технических масел вместо воды в вихревом теплогенераторе. Но масла имеют один существенный недостаток -пожароопасность, которая заставляет отказываться от применения их в системах обогрева.
А вот другой класс углеводородных жидкостей - многоатомные спирты, такие как глицерин и этиленгликоль (СН2)2(ОН)2, в смеси с водой уже являются негорючими. Эти смеси не замерзают при довольно низких температурах, чем и обусловлено использование их в качестве антифризов для заполнения радиаторов автомобилей зимой вместо воды. Водородные связи в этиленгликоле дают надежду, что и эта жидкость будет выделять тепло при вращении. Тем более в смеси с водой, потому что в воде уж точно происходит такой процесс. Поэтому проверка возможности работы вихревых теплогенераторов на углеводородных жидкостях и антифризах представляется весьма актуальной.
В публикации [244] описаны весьма интересные эксперименты, в которых воду в вихревом теплогенераторе заменили антифризом. Но эти эксперименты проводились не с целью выявления теплотехнических свойств теплогенератора при работе с антифризом, а с целью проверки осуществимости в теплогенераторе Потапова ядерной реакции превращения обычного углерода, атомы которого содержатся в молекулах этиленгликоля антифриза, в ß -активный радиоуглерод-14.
Регистрацию наработки углерода-14 осуществляли так же, как и регистрацию трития в экспериментах, описанных в разделе 18.3, с тем отличием, что был увеличен энергетический порог регистрации ß -излучения, ибо радиоуглерод-14 излучает ß -электроны с энергией до 156 кэВ, в то время как тритий даёт ß -спектр с максимальной энергией 18,6 кэВ [249].
Рабочий объём вихревого теплогенератора "ЮСМАР" заполнили тосолом - антифризом марки А40М, содержащим 53% этиленгликоля и 47% обыкновенной воды [137], который имеет температуру замерзания -40°С. До этого эксперимента на теплогенераторе проводили описанные выше опыты с рабочей жидкостью, в которой присутствовала тяжёлая вода с примесями трития. Поэтому предварительно была взята проба тосола из вихревой трубы теплогенератора после кратковременного (на 10 сек.) включения насоса для перемешивания тосола с возможными остатками тяжёлой воды.
Эта проба показала удельную ß -активность (1,6 ± 0,02) Бк/мл.
После семикратного включения теплогенератора (продолжительностью от 1,5 до 10 минут каждое) в течение полутора часов была зарегистрирована удельная ß -активность пробы в (4,6 ± 0,02) Бк/мл.
Итак, делается вывод в [244], после многократного включения установки "Юсмар", работавшей на тосоле, его удельная ß -активность обусловленная ß -излучением радиоуглерода-14, возросла на (3,0 ± 0,03) Бк/мл. Это более чем в 100 раз превышает среднеквадратичное отклонение, говорится в [244], а потому убедительно доказывает появление радиоуглерода - 14. Появиться же он мог только в результате ядерных реакций с участием ядер атомов углерода. Следовательно, и ядра атомов углерода в условиях вихревого теплогенератора вступают в ядерные реакции.
Вот только в какие? Авторы работы [244], увлечённые эрзионной гипотезой, придумывали гипотетические ядерные реакции с участием эрзионов, по которым очень редко встречающийся в природе стабильный изотоп углерода (содержание его в природном углероде составляет всего 1,1% [249]) превращается в радиоактивный углерод . Но в [263] мы показали, что радиоуглерод - 14 мог появиться не только в результате гипотетической ядерной реакции с участием эрзиона, но и в результате следующей ядерной реакции, происходящей при трехчастичных столкновениях:


(18.3)

Она хоть тоже гипотетическая, но требует участия лишь давно всем известных элементарных частиц, а не каких-то эрзионов, которых никто никогда не наблюдал. Кроме того, для реакции (18.3) годятся ядра атомов - основного изотопа углерода, которых в тосоле много. Думается, что в описанном эксперименте с тосолом радиоуглерод-14 появился именно по этой реакции.
Конечно же, эти эксперименты следует продолжить. И не только с антифризом, но и с маслами в качестве рабочей жидкости для того, чтобы достигать температур, намного превышающих 100°С, без существенного повышения давления рабочей жидкости. Тогда такой теплогенератор можно будет использовать и как парогенератор.
С другой стороны, эти эксперименты показывают, что самодеятельно "играть" с составами рабочих жидкостей вихревого теплогенератора небезопасно: можно доиграться до получения радиоактивных веществ, которые не только облучат экспериментатора, но и загрязнят окружающую среду. Конечно, не в таких масштабах, как это случилось в Чернобыле, но всё же... Так, тот же углерод-14 имеет период полураспада 5730 лет, поэтому ждать, пока нечаянно полученные радиоактивные продукты распадутся, придётся долго. А ведь радиоуглерод-14 - не самое опасное вещество. Можно получить и пострашнее...

18.6. На очереди - нейтринный "прожектор"

Выявленная осевая направленность у -излучения, рождаемого в вихревом теплогенераторе при ядерных реакциях (17.10), о которой говорилось в разделах 17.4 и 18.1, позволяет предположить, что и нейтринное излучение, рождаемое в теплогенераторе при ядерных реакциях (17.7) и (17.12), тоже имеет направленность в одну сторону вдоль вихревой трубы. Если это так (а теория утверждает, что именно так), то это открывает перспективы использования теплогенератора Потапова в качестве компактного и радиационно безопасного источника направленных пучков нейтрино, давно необходимых физикам.
Ведь до сих пор в их распоряжении не было достаточно интенсивного источника нейтрино для исследовательских целей. (Ядерные реакторы являются источниками антинейтрино.) О таких источниках нейтринных пучков давно мечтают также и геофизики, и геологи [189].
При вычисленной в разделе 18.2 по измеренному выходу трития скорости ядерных реакций (17.12) этот направленный пучок моноэнергетичных нейтрино с энергией частиц 5,9 МэВ и интенсивностью частиц в секунду уже сегодня может представлять большую ценность для науки.
Для сравнения отметим, что предполагаемая плотность потока нейтрино такой энергии от Солнца составляет всего частиц в секунду на [190]. Если мы не ошиблись, то физики, геологи и геофизики получат новый инструмент для своих исследований - теплогенератор Потапова в качестве компактного и радиационно безопасного источника моноэнергетичного нейтринного пучка, которым как прожектором можно "светить" куда хочешь, легко его поворачивая, чего не сделаешь с многотонными ускорителями, на которых до сих пор генерировали направленные пучки нейтрино гораздо меньшей интенсивности и только в импульсном режиме [190].
Но интенсивность потока нейтрино - не предел для теплогенератора Потапова. И дело не только в том, что можно взять более мощный теплогенератор. Говоря о цифре , мы ведь не учли ядерную реакцию (17.7), при которой тоже должен рождаться оеенаправленный поток нейтрино. А выход этой реакции, как уже указывалось в разделе 18.1, должен быть на несколько порядков величины большим, чем выход реакции (17.12), ибо даже в воде с добавками дейтериевой воды, использовавшейся при экспериментах, описанных в [244], содержание протия в 1000 раз больше содержания дейтерия.
Получить ответ на вопрос, действительно ли в вихревом теплогенераторе идёт ядерная реакция (17.7), не составит особых сложностей.
Для этого, как уже говорилось, надо всего лишь осуществить анализы образцов воды из него на содержание дейтерия.
Но если даже надежды на ядерную реакцию (17.7) не оправдаются, конструкторы нейтринных прожекторов могут не отчаиваться. Ведь достаточно бухнуть в воду теплогенератора не 70 мл тяжёлой воды, как в [244], а несколько литров, и выход реакции (17.12) возрастет в тысячи раз. Но тогда теплогенератор уже станет радиационно опасной установкой. Впрочем, физиков это не испугает.
Несколько сложнее получить ответ на вопрос, действительно ли рождаемые нейтрино излучаются направленно вдоль оси вихревой трубы. Для этого можно попробовать облучить теплогенератором один из немногих существующих в мире счётчиков нейтринного излучения от Солнца - "нейтринных телескопов" [189].
Если владельцы последних откажутся от сотрудничества, то это можно сделать и дистанционно, не спрашивая их разрешения. Ведь ожидаемая интенсивность пучка нейтрино от теплогенератора на много порядков величины больше интенсивности у поверхности Земли того потока солнечных нейтрино, который физики уже много лет без особых успехов пытаются зарегистрировать с помощью этих дорогостоящих установок [190]. Достаточно с дистанции хоть в 10 км направить ось вихревой трубы работающего теплогенератора в сторону такой установки, как её счетчики зашкалят. Вот где будет переполох!
В заключение отметим, что нейтринное излучение из-за крайней малости сечения его взаимодействия с веществом ( [190]) считается совершенно безвредным для людей при любой мыслимой его интенсивности. Поэтому при проектировании атомных электростанций совершенно не учитывают возможные эффекты от облучения окрестностей станции (и не только окрестностей!) всепроникающим нейтринным излучением. (Хотя оно уносит до 10% вырабатываемой электростанцией мощности [261]). И хотя мы не разделяем официальную точку зрения о том, что нейтринное излучение всегда крайне слабо взаимодействует с веществом, у нас пока нет оснований высказывать опасения о возможных последствиях от облучения людей нейтринным потоком, рождаемым вихревым теплогенератором.



 







Date: 2015-07-27; view: 459; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию