Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава восемнадцатаяЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА






18.1. Регистрация направленного у -излучения

Читатель может подумать, что всё изложенное в предыдущей главе о ядерных реакциях в теплогенераторе Потапова - это только теория, разбавленная слишком смелыми гипотезами. Действительно, экспериментов по проверке этих гипотез было проведено до обидного мало. Тут, можно сказать, всё впереди - и разочарования неудачами, и радости открытий, и награды (правда, после долгого непризнания, замалчивания, а то и оплёвывания, как это у нас обычно бывает). Но эксперименты всё же проводились.


Рис. 18.1


Самому автору, правда, довелось осуществить только один из них - измерения мощности экспозиционной дозы ионизации, создаваемой у вихревой трубы теплогенератора "ЮСМАР". Эксперименты проводились на теплогенераторе с выносной вихревой трубой, имеющей диаметр 75 мм и длину 800 мм. Теплогенератор был снабжён насосом с 5-киловаттным электродвигателем, развивавшим давление воды 5 атм.
Измерения осуществлялись с помощью бытового дозиметра "Ратон-90" (ДБГБ-01), серийно выпускавшегося на Гомельском заводе радиотехнического оснащения. Этот прибор предназначен для измерений мощности экспозиционной дозы от 10 до 10 000 мкР/час с относительной погрешностью измерений 25% при доверительной вероятности 0,95 и энергетическом диапазоне регистрируемого ионизирующего излучения, согласно паспорту прибора, от 0,1 до 3 МэВ. Время измерения (экспозиции) составляет 60 сек. Электронное табло прибора автоматически высвечивает результаты измерений с точностью до 1 мкР/час. Погрешность показаний не превышает 5% на каждые 10°С изменений температуры окружающего воздуха относительно 20°С. Этот прибор последовательно устанавливали в ряде точек как непосредственно возле вихревой трубы теплогенератора (почти впритык к её стенке или фланцу), так и на расстоянии от неё до 1,5м (см. схему на рис. 18.1.)-Сначала осуществляли измерения естественного фона в этих точках при выключенном теплогенераторе, который до этого не

Таблица 18.1. Мощность дозы ионизирующего излучения (мкР/час) в зависимости от времени t после первого включения теплогенератора в точках измерений, указанных на рис. 18.1.

ДО ВКЛЮЧЕНИЯ ПРИ РАБОТЕ УСТАНОВКИ ПОСЛЕ ВЫКЛЮЧЕНИЯ
t,мин              
Т,°С, № точки              
  6-8 14-15 14-15 7-8 14-15 14-15 12-14
  6-8 10-12 - - - 8-10 8-10
  6-8 9-10   - - - 7-8
  6-8 8-10 8-10 13-12 - - 8-10
  6-8 - - - - - -
  6-8 - - - - 8-10 -
  6-8 6-8 - - - - -
  6-8   8-10 10-12 - 8-10 -

включали в течение месяца. Затем включили теплогенератор и осуществляли измерения мощности дозы в тех же точках через 1,5,10,15,20 и 30 минут после включения. Одновременно с помощью термопары измеряли температуру воды, нагревающейся в теплогенераторе при циркуляции её по замкнутому контуру.
Результаты измерений представлены в таблице 18.1.
Из них видно, что мощность дозы на прямой линии, идущей вниз по оси вихревой трубы от ее горячего конца, в 1,5-2 раза превышает как мощность дозы естественного фона, так и мощности дозы в других точках. Из этого делаем вывод, что ионизирующее излучение распространяется в основном в одну сторону вдоль оси вихревой трубы. Толщина стальных стенок вихревой трубы составляет всего 3 мм, а толщина ее фланцев - 10 мм. Поэтому стенки не мешали бы жесткому ионизирующему излучению распространяться и в стороны от оси трубы, если бы существовала составляющая излучения с таким направлением.
Установление стальных экранов толщиной 10 мм между вихревой трубой и дозиметром практически не уменьшало показаний дозиметра. Столь высокая проникающая способность у -квантов свидетельствует о том, что они имеют энергию более
1 МэВ.
Когда вода в теплогенераторе нагрелась почти до кипения, его насос выключили, и теплогенератор охлаждался за счёт естественного остывания на воздухе в течение Двух часов.
Удивительно, что после выключения насоса мощности доз почти во всех точках измерений не изменились сразу, а уменьшались очень медленно в течение почти времени остывания теплогенератора до температуры 30°С.

Таблица 18.2. Мощность дозы ионизирующего излучения (мкР/час) в зависимости от времени t после второго включения теплогенератора в точках измерений, указанных на рис. 18.1.


ДО ВКЛЮЧЕНИЯ ПРИ РАБОТЕ УСТАНОВКИ ПОСЛЕ ВЫКЛЮЧЕНИЯ
t,мин              
Т,°С, № точки              
  9-10            
  7-8   - -   -  
  6-8   - - - - -
  6-8   - - - - -
  6-8     - -    
  6-8 -     - - -
  6-8 - - - - - -
  6-8   8-10 -   7-8  

После этого было осуществлено второе включение насоса теплогенератора. И опять повторилась почти та же картина возрастания мощности дозы под вихревой трубой по ее оси (см. табл. 18.2).
Было подмечено, что при обоих включениях после достижения температуры воды 60°С мощность дозы под вихревой трубой резко уменьшалась почти до уровня естественного фона, чтобы вернуться к прежней величине, в 1,5-2 раза превышающей фон, лишь после нагрева воды до температуры около 70°С и выше. При таком спаде мощности дозы под вихревой трубой при 60-70°С наблюдалось одновременное возрастание на небольшую величину мощностей доз в точках измерений, находящихся у боковой поверхности трубы и над противоположным (холодном) её концом. Это говорит о том, что в диапазоне температур 60-70°С отсутствует осевая направленность ионизирующего излучения, и оно либо становится изотропным, либо вообще уменьшается,
Такая аномалия как-то связана, видимо, с тем, что именно при этих температурах у воды наблюдаются экстремумы (минимумы) на графиках зависимостей от температуры её адиабатической сжимаемости и электронной поляризуемости, а также максимум скорости звука в воде (см. рис. 18.2).
Как именно изменение указанных характеристик воды влияет на ядерные реакции в ней и направление генерируемого излучения, могут подсказать лишь дальнейшие исследования. Понятно, что их надо проводить не в кустарных условиях, а в академических и отраслевых институтах, оснащённых всевозможными измерительными приборами. Сейчас же можно отметить ещё, что эта аномалия выявляется при


Рис. 18-2- Аномальные свойства воды в зависимости от температуры:
с- скорость звука (1), ß - адиабатическая сжимаемость (2),
Ср - теплоёмкость при постоянном давлении (3),
а - электронная поляризуемость (4), p - плотность (5).

той же температуре, при которой в экспериментах по калориметрии теплогенератора был выявлен аномальный скачок его теплопроизводительности.
Все это требует дальнейших исследований. Пока же можно констатировать наличие при работе теплогенератора жесткого у-излучения, исходящего из горячего конца его вихревой трубы вдоль её оси, которое создаёт экспозиционную дозу ионизации, в 1,5-2 раза превышающую уровень естественного фона.
Повышение мощности дозы ионизации возле горячего конца вихревой трубы после включения насоса теплогенератора было обнаружено нами и в контрольных опытах на двух других теплогенераторах "ЮСМАР" меньшего типоразмера, имеющих мощность насоса 3 кВт. Это подтверждает неслучайность результатов, полученных в наших исследованиях.
Но описанные измерения мощности дозы ионизации подтверждают лишь наличие ядерной реакции (17.10), сопровождающейся излучением у -квантов с энергией 5,49 МэВ в одну сторону вдоль оси вращения потока воды в вихревой трубе теплогенератора. А что может подтвердить наличие гипотетических ядерных реакций (17.7) и (17.12), на которые мы возлагали столько надежд?
Подтвердить наличие реакции (17.7), ведущей к наработке дейтерия, мог бы ядерно-активационный или масс-спектрографический анализ на дейтерий образцов воды, отобранных из вихревой трубы теплогенератора после продолжительной его работы. Мы надеемся, что интенсивность ядерной реакции (17.7), ведущей к наработке дейтерия, выше, чем реакций (17.10) и (17.12), ведущих к его расходу, потому что когда содержание в воде протия много больше содержания в ней примесей дейтерия ; вероятность столкновений протона с протоном, ведущих к реакции (17.7), много больше, чем вероятность столкновений протона с дейтроном, ведущих к реакции (17.12). Поэтому нарабатывамый дейтерий должен накапливаться в воде.
Кстати, Ю.С. Потапов уверяет, что эффективность работы теплогенератора постепенно повышается со временем его работы без замены в нём воды. Это может указывать на то, что постепенное накопление в воде теплогенератора дейтерия, нарабатываемого за счёт ядерной реакции (17.7), ведёт к повышению интенсивности ядерных реакций (17.10) и (17.12) и выхода тепла от них, а возможно, и от других ядерных реакций, неучтённых нами. Ведь в молекулах воды содержатся ещё и атомы кислорода, а он имеет несколько изотопов (). Уже тут непочатый край для исследований на предмет возможных ядерных реакций с участием этих изотопов. А ещё возможны ядерные реакции с участием атомов металла тормозного устройства, Диспергируемого в результате кавитационной эрозии в вихревой трубе, не говоря уже об атомах, входящих в состав солей, растворённых в воде, и атомах углерода входящего в состав сталей, из которых сделаны вихревая труба и тормозное устройство.
О том, что металл тормозного устройства может иметь отношение к ядерным реакциям, идущим в вихревой трубе, говорит тот факт, что жёсткое у - излучение из вихревой трубы и его осевая направленность сохраняются довольно долго и после выключения насоса теплогенератора.
Можно предположить, что причиной такой остаточной радиации является опять же торсионное поле. Авторы работы [55] писали:
"По аналогии с тем, как на уровне вещества воздействие магнита создаёт в ферромагнетике остаточную намагниченность, воздействие торсионного поля создаёт остаточную поляризацию по спину как на уровне вещества, так и в физическом вакууме. При этом спиновые поляризационные состояния являются метастабильными".
Итак, остаточное торсионное поле может вести к продолжению ядерных реакций, стимулируемых этим полем, и некоторое время (порядка часа) после выключения насоса, приводившего воду в вихревое движение в вихревой трубе теплогенератора.
Отсюда можно было бы сделать вывод, что ядерные реакции идут в металле тормозного устройства, а вероятнее всего - на его поверхности, подвергаемой кавитационной эрозии. Но не исключено, что остаточное торсионное поле, сохраняемое кристаллической решёткой металла, стимулирует ядерные реакции в воде и вдали от поверхности металла, ибо торсионное поле может простираться далеко за пределы металла.
А ещё факт протекания ядерных реакций после выключения насоса может говорить о том, что кавитация (которой при выключенном насосе не бывает) - не самое главное условие для протекания этих реакций. Возможно, что для них нужны лишь продукты кавитации - атомы, ионы и радикалы, образующиеся при диссоциации воды в кавитационных пузырьках, а также микротрещины и напряжения в поверхностном слое металла, активированном кавитацией. (Подробнее об этом мы писали в [263]). Во всех случаях все это требует дальнейших исследований.









Date: 2015-07-27; view: 471; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию