Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Статистические методы прогнозирования





Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и определения, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связанными, если математическое ожидание одной из них меняется в зависимости от изменения другой.

Применение корреляционного анализа предполагает выполнение следующих предпосылок:

1. Случайные величины y(y1, у2,..., Уn) и x(x1, x2,..., Хn) могут рассматриваться как выборка из двумерной генеральной совокупности с нормальным законом распределения.

2. Ожидаемая величина погрешности и равна нулю.

3. Отдельные наблюдения стахостически независимы, т. е. значение данного наблюдения не должно зависеть от значения предыдущего и последующего наблюдений.

4. Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y, равна нулю.

5. Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением.

6. Ковариация между погрешностью и каждой из независимых переменных равна нулю.

7. Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров bo, bi,...,bk. Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линейным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным привести их к линейной форме и уже после этого применять метод наименьших квадратов.

8. Наблюдения независимых переменных производятся без погрешности.

Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.

Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей — регрессионным анализом. Применение регрессионного анализа предполагает обязательное выполнение 2. 3 и 4 предпосылок корреляционного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными, и иметь минимальную дисперсию.

Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной информации.» Так, например, проведение регрессионного анализа возможно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном анализе используется случайная переменная, а в качестве независимой — неслучайная переменная.

По степени комплексности статистические исследования можно разделить на двумерные и многомерные.

· Первые касаются рассмотрения парных взаимосвязей между переменными (парные корреляции и регрессии) и направлены в прогнозных исследованиях на решение таких задач, как установление количественной меры тесноты связи между двумя случайными величинами, установление близости этой связи к линейной, оценки достоверности и точности прогнозов, полученных экстраполяцией регрессионной зависимости.

· Многомерные методы статистического анализа направлены в основном на решение задачи системного анализа многомерных стохастических объектов прогнозирования. Целью такого анализа является, как правило, выяснение внутренних взаимосвязей между переменными комплекса, построение многомерных функций связи переменных, выделение минимального числа характеристик, описывающих объект с достаточной степенью точности. Одной из основных задач здесь является сокращение размерности описания объекта прогнозирования.

Таким образом, статистические методы используются в основном для подготовки данных, приведения их к виду, пригодному для производства прогноза. Как правило, после их применения используется один из методов экстраполяции или интерполяции для получения непосредственно прогнозного результата.







Date: 2015-07-27; view: 528; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию