Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Математические модели
Математические модели позволяют оценивать характеристики ошибок в программах и прогнозировать их надёжность при проектировании и эксплуатации. Модели имеют вероятностный характер, и достоверность прогнозов зависит от точности исходных данных и глубины прогнозирования по времени. Эти математические модели предназначены для оценки: - показателей надёжности комплексов программ в процессе отладки; - количества ошибок, оставшихся невыявленными; - времени, необходимого для обнаружения следующей ошибки в функционирующей программе; - времени, необходимого для выявления всех ошибок с заданной вероятностью. В настоящее время предложен ряд математических моделей, основными из которых являются: - экспоненциальная модель изменения ошибок в зависимости от времени отладки; - модель, учитывающая дискретно - понижающуюся частоту появления ошибок как линейную функцию времени тестирования и испытаний; - модель, базирующаяся на распределении Вейбула; - модель, основанная на дискретном гипергеометрическом распределении. При обосновании математических моделей выдвигаются некоторые гипотезы о характере проявления ошибок в комплексе программ. Наиболее обоснованными представляются предположения, на которых базируется первая экспоненциальная модель изменения ошибок в процессе отладки и которые заключаются в следующем: 1. Любые ошибки в программе являются независимыми и проявляются в случайные моменты времени. 2. интенсивность проявления ошибок при реальном функционировании программы зависит от среднего быстродействия ЭВМ. 3. Выбор отладочных тестов должен быть представительным и случайным 4. Ошибка, являющаяся причиной искажения результатов, фиксируется и исправляется после завершения тестирования либо вообще не обнаруживается. Из этих свойств следует, что при нормальных условиях эксплуатации количество ошибок, проявляющихся в некотором интервале времени, распределено по закону Пуассона. В результате длительность непрерывной работы между искажениями распределена экспоненциально. Предположим, что в начале отладки комплекса программ при τ = 0 в нём содержалось N0 ошибок. После отладки в течении времени τ осталось n0 ошибок и устранено n ошибок n0 + n = N0). При этом время τ соответствует длительности исполнения программ на вычислительной системе (ВС) для обнаружения ошибок и не учитывает простои машины, необходимые для анализа результатов и проведения корректировок. Интенсивность обнаружения ошибок в программе dn/dτ и абсолютное количество устранённых ошибок связываются уравнением
где k - коэффициент. Время безотказной работы программ до отказа T или наработка на отказ, который рассматривается как обнаруживаемое искажение программ, данных или вычислительного процесса, нарушающее работоспособность, равно величине, обратной интенсивности обнаружения отказов (ошибок):
В процессе отладки и испытаний программ для повышения наработки на отказ от T1 до T2 необходимо обнаружить и устранить Δn ошибок. Величина Δn определяется соотношением:
затрат времени Δτ на проведение отладки
Вторая модель построена на основе гипотезы о том, что частота проявления ошибок (интенсивность отказов) линейно зависит от времени испытания ti между моментами обнаружения последовательных i - й и (i - 1) - й ошибок.
где N0 - начальное количество ошибок; K - коэффициент пропорциональности. Для оценки наработки на отказ получается выражение, соответствующее распределению Релея:
Отсюда плотность распределения времени наработки на отказ
Особенностью третьей модели является учёт ступенчатого характера изменения надёжности при устранении очередной ошибки. В качестве основной функции рассматривается распределение времени наработки на отказ P(t). Если ошибки не устраняются, то интенсивность отказов является постоянной, что приводит к экспоненциальной модели для распределения:
Отсюда плотность распределения наработки на отказ T определяется выражением:
где t > 0, λ > 0 и 1/λ - среднее время наработки на отказ, т.е. Тср=1/λ. Здесь Тср – среднее время наработки на отказ. Распределение Вейбулла достаточно хорошо отражает реальные зависимости при расчёте функции наработки на отказ. Основные понятия вероятности Событие, вероятность события.
Случайная величина
Невозможные и достоверные события
Date: 2015-07-25; view: 684; Нарушение авторских прав |