Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Два предела сжатия для фигур равновесия





Коснемся сначала истории нашего вопроса. И.Ньютон (1643-1727) для объяснения явления, которое заметили многое астрономы, отъезжающие в экспедиции для наблюдений солнечного затмения в экваториальную зону, астрономические часы маятникового типа отстают по сравнению с Парижской обсерваторией, где они строго выверялись, на 2,5 минуты в сутки. Ньютон предположил, что виной тому служит эллипсоидальная форма Земли и, естественно, ее суточное вращение. Предполагая, что Земля -- однородный эллипсоид вращения, он получил, что сжатие земного эллипсоида должно быть равным 1,25 =1:230.

Современник Ньютона Гюйгенс (1629-1695) решает ту же задачу, но другим путем. Он предположил, что силы притяжения направлены к центру, а эллипсоидальность поверхности уровня возникает только за счет центробежной силы. Таким образом, если Ньютон в качестве фигуры равновесия брал эллипсоид Маклорена, то Гюйгенс -- фигуру, которую мы назвали "планетой Роша". Он получил, что сжатие равно 0.5 = 1:576. Результат, который значительно отличается Ньютоновской оценки сжатия.

Вернемся к теории Клеро. Согласно его теории сжатие равновесной планеты должно быть равно . Первый предел сжатия получим, если примем Земли однородным двухосным эллипсоидом, для которого , . Отсюда .

Но , , . Следовательно и, наконец,

(4.19)


Мы получили то же значение, что и Ньютон, правда с точностью до первой степени сжатия.

Второй предел сжатия, мы получим, если будем считать все притягивающие массы шаром, тогда и

(4.20)


Таким образом. реальное сжатие лежит между этими двумя пределами

Для иллюстрации сказанного приведем сжатия некоторых планет Солнечной системы, а также их возможные предельные значения

 

Таблица. Сжатия планет  
Название планеты сжатие  
по Ньютону по Гюйгенсу реальное  
Земля 1:230 1:576 1:297  
Марс 1:174 1:434 1:192  
Юпитер 1:9,4 1:23,5 1:15  
Сатурн 1:5,1 1:12,8 1:10  
Уран 1:10,6 1:26,6 1:14  

 



Сравнивая значения сжатия, мы видим, что фигура планеты в значительно степени зависит от ее внутреннего строения. Планеты Земля и Марс весьма далеки от того строения, которое принял Гюйгенс: планета имеет компактное твердое притягивающее тело, окруженное рыхлой оболочкой. По величине сжатия можно судить о том, что к такой модели более подходят планеты гиганты.

Приведенные данные взяты из книги акад. А.А. Михайлова "Курс гравиметрии и теории фигуры Земли", опубликованной в 1939 году. Современные данные могут несколько отличаться от приведенных, хотя общая картина не изменится.

 







Date: 2015-07-25; view: 148; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию