Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Решение нелинейного уравнения методом Ньютона. Рассмотрим применение метода Ньютона сначала для решения одного нелинейного уравнения f(х)=0, где f(х) - непрерывно дифференцируемая функция
Рассмотрим применение метода Ньютона сначала для решения одного нелинейного уравнения f (х)=0, где f (х) - непрерывно дифференцируемая функция. Функцию f (х) можно разложить в ряд Тейлора в окрестностях произвольно взятой точки х (0)
Если в многочлене (1) отбросить производные высших порядков и оставить только линейные члены, то получим
где Эта операция называется линеаризацией нелинейного уравнения. Из линеаризованного уравнения (2) можно выразить поправку
и вычислить новое (первое) приближение к корню
Если подставить значение Таким образом, суть метода Ньютона заключается в линеаризации нелинейного уравнения и решении полученного линейного уравнения на каждой итерации. Значение корня линейного уравнения является очередным приближением к корню решаемого нелинейного уравнения. Графическая иллюстрация применения метода Ньютона для решения нелинейного уравнения f (х)=0 дана на рисунке.
Как видно из рисунка, к действительному корню Алгоритм решения нелинейного уравнения f (х)=0 методом Ньютона состоит из следующих действий: 1. Задаем начальное приближение х (0). 2. Вычисляем невязку f (х (0)). 3. Определяем 4. Вычисляем поправку ∆ х (1) (как катет АС прямоугольного треугольника АВС).
5.
6. Вычисляем невязку f (х (1)) и проверяем условие Если условие выполняется, то вычислительный процесс заканчивается, в противном случае повторяем действия начиная с 3-го. Примечание: 1. Значение ε задается в каждом конкретном случае и не должно быть равным нулю, так как итерационный метод не позволяет определить абсолютно точное значение корня (это обычно практически не требуется). Неоправданное снижение значения ε не рекомендуется, поскольку при этом увеличивается число итераций. 2. Если у функции f (х)=0 имеется несколько корней, то метод Ньютона позволяет найти вещественный корень и причем только один в области притяжения которого находится начальное приближение.
Пример: нужно решить нелинейное уравнение 7 х 3+5 х -1=0 (ε = 0,01)
2. | f (х (0))=1|>ε | Начальная невязка f (х (0))=1| ≥ε
2. 3. х (1)= х (0)-∆ х (1)=0-(-0,2)=0,2 4. f (x (1))=7∙0,23+5∙0,2-1=0,056 |0,056| > ε
2. 3. х (2)= х (1)-∆ х (2)=0,2-0,01=0,19 4. f (x (2))=7∙0,193+5∙0,19-1=0,048+0,95-1=0,002 |0,002|< ε Результаты расчетов целесообразно представить в следующей таблице
Date: 2015-07-24; view: 442; Нарушение авторских прав |