Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 5. Клеточное дыхание





 

Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке досталось, как при коммунизме, – не по труду, а по потребностям.

 

Рис. 10. Митохондрия

Ни для кого не секрет, что наше тело состоит из множества живых клеток – непохожих по своему строению, но работающих с одной целью – обеспечить своим существованием жизнедеятельность цельного организма, являющегося материальной основой нашей Личности, который мы обычно называем телом. Однако, различаясь по своим функциям и строению, все клетки все же имеют общие черты – как люди, различающиеся как отдельные личности, но имеющие одинаковый набор внутренних органов (сердце, легкие, мозг и т. д.) и примерно одинаковый набор биологических потребностей (воздух, питание, тепло и т. д.). Эти закономерности в равной степени относятся как ко всему организму, так и к каждой его клетке, и в первую очередь любая клетка нашего тела нуждается в энергии. Эту энергию клетка получает путем окисления органических веществ, для процесса окисления необходим кислород – другими словами, клетка получает энергию в процессе клеточного дыхания. Но и здесь все совсем непросто. Законы биоэнергетики

Клеточное дыхание присуще всем организмам, живущим в содержащей кислород среде. Этот процесс лежит в основе обеспечения потребностей клетки в энергии. Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов. Такими «внешними ресурсами» для клетки могут быть поступающие из внешней среды химические вещества или даже солнечный свет для растительных клеток, содержащих хлорофилл Если говорить о потребностях живой клетки, то они складываются из различных процессов, каждый из который требует энергии для своего совершения. Сами эти процессы, в свою очередь, необходимы для совершения отдельных видов полезной работы для нужд как самой клетки, так и целостного организма. Даже у простейших живых существ, каковыми являются бактерии, таких процессов насчитывается несколько десятков, и все они нуждаются в энергетическом обеспечении. Что же в таком случае говорить о высокоспециализированных клетках человеческого тела – о нервных, железистых, мышечных клетках? Их «энергетические траты» значительно выше.

 

 

...

Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов.

 

Трудно себе представить, что Природа, стремящаяся к максимальной целесообразности действий любого организма, заложила для каждого из этих процессов отдельный механизм обеспечения энергией. Конечно, это не так. Как верно и точно заметил действительный член РАН В.П. Скулачев, «живая клетка располагает особой «энергетической валютой», играющей роль посредника между процессами запасания энергии и ее траты».

В течение достаточно долгого времени ученые считали, что единственным видом такой «валюты» служат так называемые высокоэнергетические химические соединения, – в первую очередь, известный даже школьникам аденозинтрифосфат (АТФ). Однако современные исследования опровергли эту догму. Оказалось, что клетка располагает не одним, а тремя типами «энергетической валюты». Наряду с АТФ такую роль выполняют водородный (протонный) и натриевый потенциалы на биологических мембранах.

На основе полученных данных учеными были сформулированы три закона биоэнергетики. Кратко их суть сводится к следующим положениям:

Первый закон биоэнергетики

Живая клетка не использует внешние ресурсы для получения энергии, необходимой для обеспечения внутренних процессов, «напрямую». Клетка «конвертирует» энергию внешних ресурсов в одну из трех внутренних «энергетических валют»: АТФ, натриевый или протонный (водородный) потенциал, затем «валюта» расходуется на осуществление различных энергоемких процессов.

По еще одному меткому замечанию В.П. Скулачева, который дал подробное описание законов биоэнергетики, «клетка предпочитает денежное обращение, а не бартер». Простейшим примером запасания энергии в «конвертируемой» форме может быть гликолиз, или расщепление углеводов до молочной кислоты с получением молекулы АТФ. Если затем АТФ используется, например, для совершения механической работы (у животных для мышечного сокращения), цепь процессов завершается расщеплением АТФ до АДФ и фосфата сократительным белком мышечной клетки (актомиозином). Если источником энергии для мышечной работы служит не гликолиз, а дыхание (что энергетически более выгодно), то есть окисление кислородом питательных веществ (например, углеводов), результатом также будет получение АТФ, но путь к нему будет более сложным.

Второй закон биоэнергетики

Живая клетка в результате эволюции приобрела способность использовать как минимум две «энергетические валюты»: водорастворимую (АТФ) и связанную с мембраной – натриевый или водородный потенциал.

Старая народная мудрость «не держи все яйца в одной корзине» находит подтверждение и на клеточном уровне. Если же использовать экономические выкладки и для дальнейших объяснений физиологических процессов, можно сказать, что клетка держит часть капитала в наличных деньгах, а часть в акциях, причем в двух разных банках.

Третий закон биоэнергетики

«Энергетические валюты» клетки могут превращаться одна в другую, поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.

Вывод простой, сформулируем его с точки зрения «экономики клетки»: не важно, в какой «валюте» поступил доход. Главное, чтобы «валюта» была конвертируемая. Очень часто живая клетка располагает несколькими источниками энергии. Так, животные клетки могут использовать для энергообеспечения как дыхание, так и гликолиз – бескислородное извлечение энергии из органических веществ. Однако, как правило, даже в самых сложных случаях, какой‑то один процесс доминирует в каждый конкретный момент времени и сменяется другим при изменении условий. В наиболее эволюционно «продвинутой» животной клетке есть все три вида «энергетической валюты», это увеличивает ее способность к выживанию и выполнению функций в организме.

Функции клеточного дыхания

Функции процесса клеточного дыхания достаточно разнообразны. В упрощенном виде они могут быть разделены на четыре группы:

1. Запасание «энергетической валюты» в конвертируемой форме (АТФ или протонного потенциала).

2. Выделение энергии в виде тепла.

3. Образование веществ, необходимых клетке для ее существования.

4. Удаление веществ, наличие которых во внутренней среде клетки нежелательно.

«Банковский счет» клетки

Если рассматривать процессы, происходящие в клетках, с позиций затраченных усилий и поглощенного кислорода, функция накопления «энергетической валюты» является, пожалуй, ведущей, основной функцией клеток. Поглощенный кислород используется для окисления субстратов дыхания (к примеру, глюкозы) в митохондриях клетки и получения на выходе этой реакции АТФ и протонный потенциал. Митохондрии в этом случае выступают и в роли «топок», и «энергогенераторов». Гидролиз АТФ в дальнейшем используется для различных целей – это своеобразная «наличность» клетки, которую она может использовать сразу или чуть позже, при возникновении потребности. Кислород для этого уже не нужен. Энергия гидролиза АТФ используется для обеспечения различных энергоемких процессов, таких как биосинтез веществ, мышечное сокращение и внутриклеточное движение, транспорт ионов через внешнюю мембрану клетки и т. д.

О солидных (в размерах целостного организма) масштабах этого процесса говорят весьма солидные цифры:

• митохондрии взрослого человека среднего роста и веса «перекачивают» через свои мембраны около 500 г ионов водорода в день, образуя протонный потенциал;

• за это же время в митохондриях производится около 40 кг (!) АТФ и такое же его количество утилизируется обратно в АДФ;

Сразу «бросающаяся в глаза» важность функции накопления «энергоносителей» и связанных с ней процессов формирует ошибочное представление, что роль дыхания в жизнедеятельности клетки исчерпывается участием кислорода в образовании АТФ. Однако существуют и другие функции клеточного дыхания. Наиболее очевидный пример – образование тепла в целях терморегуляции.

Чтобы жить, надо жить в тепле

Практически вся энергия, которую производят клетки, в конечном итоге превращается в тепло. Расщепляются синтезированные ранее вещества, кровь нагревается за счет трения о стенки кровеносных сосудов, тепло образуется и в результате протекания внутриклеточных процессов, сопряженных с расходом АТФ. Для сравнения, на совершение мышечной работы уходит всего около 20 % вырабатываемой организмом энергии, а все остальное ее количество – это «энергия тепла». Поэтому чтобы, например, согреться на холоде, организму, в принципе, не нужно подключать процессы дыхания. Иногда согревание так и происходит: дрожь на сильном морозе не что иное как мышечные сокращения, помогающие расщепить АТФ посредством актомиозина. Никакой полезной работы при этом не совершается, и вся энергия дыхания превращается в тепло. Однако такой способ вырабатывания тепла вряд ли можно назвать оптимальным, поскольку не достигается глобальная цель терморегуляции – вывести биологические процессы из зависимости от температуры окружающей среды.

 

 

...

Практически вся энергия, которую производят клетки, в конечном итоге превращается в тепло.

 

Неудивительно, что при адаптации к холоду у животных и человека дрожь постепенно исчезает, тепло начинает вырабатываться каким‑то другим способом, при котором дыхание по‑прежнему активировано, но мышечных сокращений не происходит.

Итак, рассмотрев энергетические функции дыхания, мы узнали о том, что энергия накапливается в форме протонного потенциала и АТФ или расходуется на выработку тепла. Мы убедились в альтернативности энергозапасающей и тепловыделяющей функций дыхания, которое образует либо АТФ, либо тепло. Обратите внимание на то, что речь идет опять‑таки не о «прямом противопоставлении». Эти функции представляют собой две чаши одних весов, находящихся у живых организмов в состоянии неустойчивого равновесия. В таком же состоянии неустойчивого равновесия находится и процесс превращения АТФ в АДФ, а также процесс транспорта CO2 и O2 – направление процесса четко связано с концентрациями газов, т. е. против естественной разницы потенциалов идти не будет.

Теперь нам предстоит уже в более краткой и простой форме познакомиться с двумя другими функциями дыхания, отвечающими за «превращение» (синтез) веществ, а не выработку энергии.

 

Клетка делает себя сама

Метаболические процессы, жизненно необходимые для клетки, сопровождаются поглощением кислорода. При этом в итоге образуются те или иные полезные соединения. Поставленная задача (получение необходимых веществ) решается посредством сложной цепи реакций, часть из которых происходит в митохондриях. Когда речь идет о крупномасштабных превращениях веществ, например образовании углеводов из жиров, возникает закономерный вопрос о доступности необходимых запасов АТФ как «энергетической валюты». Этот процесс требует потребления большого количества кислорода, поскольку сахара содержат больше атомов кислорода, чем жир.

Убери за собой!

В процессе синтеза новых веществ и их распада внутри клетки образуются «остатки» (токсины), которые не могут быть использованы клеткой в дальнейшем. Многие из таких остатков сами по себе опасны для клетки, при повышении их концентрации клетка может даже погибнуть.

Удалению из организма токсических соединений обычно предшествует их окисление кислородом, в результате чего образуются продукты, которые лучше растворяются в воде и потому могут быть быстрее выведены из организма через почки. Кислород доставляется, как мы уже разобрались, с воздухом, который мы вдыхаем.

Дыхание также участвует в «уборке» молочной кислоты – конечного продукта бескислородного (анаэробного) метаболизма. При тяжелой и продолжительной физической работе в мышцах заканчивается запас кислорода, единственным механизмом энергообеспечения становится анаэробный распад углеводов (гликолиз), завершающийся образованием молочной кислоты. Закисление межклеточной жидкости и клеточной цитоплазмы из‑за накопления кислоты грозит распадом клеточных белков и массовой гибелью клеток, поэтому возникает проблема скорейшего удаления молочной кислоты после того, как работа уже выполнена. Это особенно существенно для клеток мышцы, которая находится в состоянии покоя, когда энергозатраты резко снижены (по сравнению с состоянием физической работы).

Кроме того, как это ни парадоксально, но одним из самых токсических продуктов, с которым сталкивается дышащая клетка, является сам кислород.

Именно поэтому клетка стремится поддерживать его концентрацию на минимальном уровне. Одним из механизмов, обеспечивающих эту функцию, оказывается опять‑таки дыхание. Потребление кислорода дыхательными ферментами снижает количество кислорода в митохондриях и клетке в целом, тем самым предотвращая нежелательное действие кислорода как неспецифического окислителя многих клеточных компонентов.

 

 

...

Это говорит о том, как велика «прочность» нашего организма, если он продолжает функционировать, сохранив всего 10 % своего жизненного потенциала!

 

В середине 90‑х годов XX века японским биохимиком Т. Озава было показано, что у 97‑летней женщины около 90 % ДНК митохондрий – основного носителя информации о «правильности» протекания биохимических процессов – в клетках сердечной мышцы были безнадежно испорчены из‑за окисления. Тем не менее клетки миокарда продолжали выполнять свою функцию…

Это говорит о том, как велика «прочность» нашего организма, если он продолжает функционировать, сохранив всего 10 % своего жизненного потенциала!

 

Date: 2015-07-23; view: 1110; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию