Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Глава 6. Всеобщность
Определенные характеристики (такие, например, как масса частицы) всегда считались постоянными, как и масса любого предмета, встречающегося нам в повседневной жизни. Принцип масштабирования быстро распространился благодаря тому, что трактовал величины вроде массы не как постоянные. Масса и подобные ей характеристики в процессе перенормировки варьируются как в сторону уменьшения, так и в сторону увеличения в зависимости от масштаба, в котором их рассматривают. Эта идея, казавшаяся полной нелепостью, была точным аналогом рассуждений Мандельброта о геометрических формах и береговой линии Великобритании (о том, что их длину невозможно измерить вне зависимости от масштаба). Здесь присутствовала определенная доля относительности. Местоположение наблюдателя – близко ли он, далеко ли, на берегу моря или на космическом спутнике – влияло на результат. Мандельброт также заметил, что наблюдаемые при переходе от одного масштаба к другому перемены подчиняются определенным закономерностям, далеким от произвольности. Изменчивость общепринятых измерений массы или длины говорила о том, что фиксированной остается некая величина иного типа. В случае с фракталами такой величиной было фрактальное измерение – инвариант, который можно рассчитать и использовать в качестве инструмента для дальнейших вычислений. Допущение, что масса может варьироваться в зависимости от масштаба, означало, что математики могут различить феномен подобия, невзирая на масштаб явления. Файгенбаум, начав в Лос-Аламосе размышлять над феноменом нелинейности, понял, что из долгих лет своего обучения он, в сущности, не почерпнул ничего полезного. Решить систему нелинейных дифференциальных уравнений, не придерживаясь примеров из учебника, казалось невозможным. Ученый сделал вывод, что сколько-нибудь разумному физику они мало чем помогут. Имея в своем распоряжении лишь карандаш и бумагу для вычислений, Файгенбаум решил начать с аналога простого уравнения, рассмотренного в свое время Робертом Мэем применительно к биологии популяций. С таким уравнением – его можно записать как у = r(х-х2) – ученики средней школы знакомятся в курсе алгебры при построении параболы. Каждое значение х дает новое значение у, полученная в результате кривая выражает связь между х и у в определенном диапазоне значений, при х, меняющемся от нуля до r. Если х (численность популяции в текущем году) мала, то у (численность популяции в следующем году) также будет невелика, но больше, чем х. Кривая резко поднимается вверх. Если значение х находится в середине диапазона, то в этом случае значение у велико. Но парабола выравнивается близ своей вершины и начинает снижаться так, что если значение х велико, значение у вновь мало. Именно это и является эквивалентом скачков численности популяции в экологическом моделировании, предотвращая ничем не ограниченный рост. Для Мэя, а затем и для Файгенбаума главное заключалось в том, чтобы произвести это простое вычисление не один раз, а повторять его бесконечно, как в «петле обратной связи». Итоги одного подсчета служили начальными данными для следующего. Для графического представления результатов парабола оказывалась незаменимой. Надо было выбрать начальную точку на оси х, провести перпендикуляр вверх до пересечения с параболой, найти соответствующее значение на оси у и принять его за новое значение х. И так далее и тому подобное… Результат сначала будет «скакать» от одной точки к другой, а потом, вероятно, установится на уровне устойчивого равновесия, где значения х и у равны, то есть численность популяции остается неизменной. Результат являл собой ряд чисел, не всегда достигавший в итоге стабильного значения: он мог завершиться и скачками значения в некотором интервале, или, как разъяснял Мэй своим коллегам, ряд мог продолжать изменяться совершенно хаотичным образом и настолько долго, насколько хватит терпения за ним наблюдать. Поведение числового ряда зависело от выбранного значения параметра. В то время никто не догадывался, что Лоренц еще в 1964-м году рассматривал то же уравнение, пытаясь разрешить один вопрос, касавшийся климата. Вопрос этот был столь глубок, что почти никому не приходил в голову. Никто не задумывался, а существует ли климат, можно ли вывести долгосрочные средние значения погодных характеристик для определенных зон земного шара? Тогда, как и сейчас, большинство метеорологов считали, что ответ очевиден: конечно, любая поддающаяся измерению величина – неважно, какие она демонстрирует колебания, – должна иметь некое среднее. Если же вдуматься, все далеко не так ясно. Лоренц указывал, что средняя погода на Земле в течение последних 12 тысяч лет заметно отличалась от средних климатических условий предыдущих 12 тысяч лет, когда почти вся Северная Америка лежала под ледяным покровом. Значило ли это, что переход от одного климата к другому произошел в силу физических причин? Или упомянутые временные отрезки были периодами отклонений от стабильных долгосрочных погодных условий? А может, система, подобная погоде, никогда не усредняется? Как и Мэй, Лоренц прежде всего выяснил, что происходит, если задавать разные значения параметра. При низких значениях числовой ряд достигал стабильной фиксированной точки, то есть модель климата вела себя абсолютно предсказуемо: погода никогда не изменялась. Умеренный рост значения параметра провоцировал колебания между двумя точками, но и в этом случае система также усреднялась. За определенной чертой появлялся хаос. Поскольку Лоренц занимался проблемой климата, его интересовало не только то, приведет ли обратная связь к периодическому поведению, – он хотел знать среднее значение полученного результата. Лоренц выяснил, что среднее также подвержено колебаниям. При незначительном варьировании параметра оно могло измениться довольно существенно. Аналогично и земной климат мог никогда не знать прочного равновесия. Продолжая изучать изменчивые лики динамических систем, Лоренц осознал, что зависимости чуть более сложные, чем квадратичная, способны внезапно обнаруживать иные типы структур. Внутри отдельно взятой системы нередко таилось не одно устойчивое решение. Если система довольно долго демонстрировала лишь один тип поведения, это не означало, что ей в равной мере не присущ совершенно иной тип поведения. Подобные системы именуют непереходными (интранзитивными), они могут находиться или в одном, или в другом состоянии равновесия, но никак не в обоих сразу, и лишь толчок извне способен заставить систему изменить свое состояние. Ученым, изучающим климат и использующим компьютерные программы для моделирования долгосрочного поведения атмосферы и гидросферы Земли, уже несколько лет назад стало известно, что их модели способны демонстрировать как минимум два состояния равновесия, различающихся коренным образом. Один из этих сценариев, весьма драматический, не был реализован ни в одну из минувших геологических эпох. Как бы то ни было, он остается вторым верным решением системы уравнений, управляющих земной погодой. Некоторые специалисты называют его климатом Белой Земли – планеты, континенты которой погребены под снегами, а океаны скованы льдом. Для того чтобы вся Земля оделась во льды, необходим мощный толчок извне. Но Лоренц описал еще один тип поведения, названный им «квазиинтранзитивностью». В течение длительного времени система ведет себя примерно одинаково, флуктуации остаются в определенных границах; затем, без какой бы то ни было причины, система резко меняет свое поведение, все еще колеблясь, но обнаруживая уже другое среднее. Не нужно много фантазии, чтобы увидеть в квазиинтранзитивности вполне убедительные объяснения того, почему в истории Земли случались ледниковые периоды, наступавшие через случайные интервалы времени. Если это объяснение действительно справедливо, нет нужды доискиваться до физических предпосылок оледенения. Ледниковый период может быть побочным продуктом хаоса. Роль Файгенбаума стала предметом ожесточенных споров. Как бы то ни было, именно Файгенбаум открыл всеобщность и создал теорию, ставшую точкой опоры для новой дисциплины. Date: 2015-07-10; view: 416; Нарушение авторских прав |