Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основы корреляционного метода





Диалектический подход к изучению закономерностей природы и общества требует рассмотрения процессов и явлений в их сложных взаимосвязях.

Явления географической среды зависят от многих, часто неизвест­ных и меняющихся факторов. Выявить и изучить такие связи помогает теория корреляции - один из центральных разделов математической статистики, исключительно важный для исследователей.

Рис. 1. Функциональ­ная зависимость

 

Главные задачи корреляционного анализа - изучение формы, знака (плюс или минус) и тесноты связей.

Все связи делятся на функцио­нальные, рассматриваемые в курсах математического анализа, и корреля­ционные.

Функциональная зависимость предполагает однозначное соответ­ствие между величинами, когда численному значению одной величины, называемой аргументом, соответствует строго определенное значение другой величины - функции. При графическом изображении функцио­нальной связи в прямоугольной системе координат (х, у), если по оси абсцисс отложить значение одного признака, а по оси ординат - друго­го, все точки расположатся на одной линии (прямой или кривой).

В любой опытной науке экспериментатор имеет дело не с функ­циональными связями, а с корреляционными, для которых характерен известный разброс результатов эксперимента. Причина колеблемости заключается в том, что функция (изучаемое явление) зависит не только от одного или нескольких рассматриваемых факторов, но и от множест­ва других. Так, урожайность зерновых культур будет зависеть от ряда климатических, почвенных, экономических и других условий. Если связь урожайности с каким-либо из указанных факторов изобразить графически в системе координат (х, у), то получим разброс точек. Зако­номерности корреляционных связей и изучает теория корреляции.

В основе теории корреляции лежит представление о тесноте свя­зи между изучаемыми явлениями (большая или малая связь). Для луч­шего уяснения редко встречаемого в географической литературе поня­тия «теснота связи» представим его в графической форме путем построения так называемого поля корреляции. Для этого результаты каждого наблюдения за элементами статистической совокупности по двум признакам отмечаем точкой в системе прямоугольных координат х и у. Таким путем, например, можно изобразить зависимость урожайно­сти зерновых по районам от гидротермического коэффициента. Чем больше разброс точек на поле корреляции, тем меньше теснота связи между изучаемыми явлениями. Рассмотрим два корреляционных поля (а и б, рис. 2). На поле а показана зависимость скорости роста оврагов (у) от площади водосбора (xi), на поле б - от угла наклона (хз). Меньший разброс точек первого корреляционного поля указывает на то, что скорость роста оврагов более тесно связана с площадями водосбо­ров, чем с углами наклона. Иначе можно сказать: изучаемое явление зависит от первого картометрического показателя в большей степени.

По общему направлению роя точек - слева вверх направо - можно заключить, что в обоих случаях связь положительная (со знаком плюс).

 

При отрицательной (минусовой) зависимости рой точек направлен слева вниз направо (рис. 3). По характеру размещения точек в рое, их близо­сти к оси можно визуально определить не только тесноту и знак связи, но и ее форму, которая подразделяется на прямолинейную и криволинейную.

Первая форма связи воспроиз­ведена на рис. 2 а и б. Она условна и является частным случаем связи криволинейной. Однако именно прямолинейная связь (при всей ее условности) рассматривается в географических и других исследо­ваниях наиболее часто из-за простоты математико-статистического аппарата ее оценки и возможности применения при изучении многофакторных связей и зависимостей.

Рис. 4. Криволинейная форма связи

Степень кривизны географических корреляционных связей во многом зависит от меридиональной протяженности изучаемых терри­торий. На рисунке 4 показана в схематизированном виде криволинейная зависимость среднегодовой температуры (t) от географической широты t(j) в глобальном масштабе - от южного полюса (ЮП) через экватор (Э) до северного полюса (СП). Чем меньше протяженность изучаемой территории с юга на север, тем больше оснований назвать ее прямолинейной.

Так, на восходящем отрезке АВ (южное полушарие) связь прямолинейная положительная, а на нисходящем отрезке CD (северное полушарие) - прямолинейная отрицательная. На приэкваториальном отрезке ВС связь сохраняется криволинейной.

Визуально-графический способ изучения тесноты и формы связи прост, нагляден, но недоста­точно точен. Математико-статистическая обработка результатов наблюдений позволяет определить чи­словые значения, характеризующие как форму, так и тесноту связей.


Наиболее распространенным показателем тесноты прямолинейной связи двух количественных признаков считается коэффициент корре­ляции (r). Его абсолютное численное значение находится в пределах от 0 до 1. Чем теснее связь, тем больше абсолютное значение г.

Если r = 0, то связи нет, если он равен ±1, то связь функциональ­ная (точки расположатся строго по линии). Знак «плюс» (+) указывает на прямую (положительную) зависимость, «минус» - на обратную (отрицательную). Предельные значения коэффициента корреляции (r = + 1, 0 и - 1) в практике географических исследований не встречаются; обычно их числовые значения находятся между нулем и положительной или отрицательной единицей.

Схема вычисления коэффициента корреляции

- сумма по столбцу 5; n - число наблюдений; dx и d у - средние квадратические отклонения признаков х и у.

 

Как и всякая другая выборочная математико-статистическая ха­рактеристика, коэффициент корреляции имеет свою ошибку репрезен­тативности, вычисляемую при больших выборках (n > 50) по формуле

 

 

 

Таким образом, точность вычисления коэффициента корреляции повышается с увеличением объема выборки; она велика также при большой тесноте связи (r близок к +1 или -1).

 







Date: 2015-07-17; view: 346; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию