Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вступление. Принятая на сегодняшний день модель развития промышленности предполагает широкую роботизацию‚ создание гибких автоматизированных производств и отводит особое





Принятая на сегодняшний день модель развития промышленности предполагает широкую роботизацию‚ создание гибких автоматизированных производств и отводит особое место микроэлектронике как средству и материальной базе реализации целевых программ в области автоматики и робототехники, вычислительной техники, механизации и автоматизации ручных операций во всех отраслях промышленности.

Особая роль отводится микроэлектронике в развитии вычислительных средств.Но сложность современных ИМС требует новых подходов проектирования

Системы автоматизированного проектирования (САПР) уже давно являются неотъемлемой частью современного производства. Образовавшись в виде средств решения проектных задач, имеющих четко выраженный расчетный характер, системы автоматизированного проектирования прошли несколько стадий своего развития и выросли до уровня технологий, охватывающих больше, чем просто проектирование. Однако современный рынок проектных работ требует дальнейшей модернизации и перехода на новые технологии. Заказчики всё чаще обращают внимание не только на стоимость проекта, но и на техническое оснащение организации, ее способность в сжатые сроки выпустить качественный проект. При этом от предприятия требуется применение самых современных методов и подходов к созданию и поддержке изделия на всех стадиях его жизненного цикла. Поддержка жизненного цикла изделия, PLM (Product Lifecycle Management), комплексная автоматизация и использование единого информационного пространства становятся ключевыми при выборе средств автоматизации.

Проведение комплексной автоматизации, обеспечивающей не только потребности максимального количества проектных специальностей, но и корректную передачу данных между рабочими местами различного назначения, создание единого информационного пространства является первоочередной задачей проектных организаций. Как результат, повышается качество выпускаемой документации, уменьшается количество ошибок, сокращаются сроки проектирования, а значит, повышается конкурентоспособность предприятия. При этом задачи единой среды проектирования сводятся к обеспечению коллективной работы проектно-конструкторских подразделений над проектом, хранению и поиску информации в электронных архивах, повторному использованию отработанных и проверенных технических решений, хранящихся в архиве, а также исключению ошибок за счет устранения нескольких источников для хранения одной и той же информации.

 

 

Раздел 1 “Использование САПР в проектировании интегральных микросхем”

 

Развитие электроники неразрывно связано с развитием средств автоматизированного проектирования электронных устройств. Без работы специалистов этой области уже невозможно представить проектирование и производство современных микроэлектронных систем. Сегодня индустрия средств автоматизированного проектирования электроники (Electronic Design Automation – EDA) – неотъемлемая часть электронной промышленности. Ежегодный оборот EDA-индустрии превышает четыре миллиарда долларов.

В конце 80-х годов интегральные микросхемы настолько усложнились, что создание описания принципиальной схемы (как с помощью схемотехнического редактора, так и в текстовом виде) стало существенной проблемой. Были разработаны первые инструменты, которые позволяли из описания на уровне регистровых передач (Register Transfer Level – RTL, языки Verilog или VHDL), уже применявшихся в моделировании, автоматически синтезировать описание принципиальной схемы на уровне логических элементов. В 1987 году компания Synopsys вышла на рынок с соответствующим продуктом Design Compiler, за ней вскоре последовал AutoLogicот фирмы SCS-Mentor Graphics. Специалисты Synopsys вовремя оценили преимущества технологии автоматического синтеза для рынка СБИС на базе стандартных библиотек логических элементов (ASIC). Использование таких средств позволяло разработчикам проводить независимое проектирование ИС на верхнем уровне, осуществляя разработку описания на языках Verilog или VHDL и его верификацию средствами логического моделирования. После автоматического синтеза результаты проектирования в виде описания принципиальной схемы на уровне логических элементов передавались компании-производителю ИС.

Компания производитель выполняла физическое проектирование (размещение/трассировка, контроль правил проектирования и соответствия электрической схеме, подготовка данных для изготовления фотошаблонов), а также производство и тестирование. Таким образом, до середины 90-х годов на EDA-рынке в сфере физического проектирования и проектирования аналоговых и смешанных ИС лидировала компания Cadence, а в области логического синтеза господствовала Synopsys.

 

1.1 Современное положение индустрии

В середине 90-х годов появились первые интегральные схемы

с нормами проектирования 0,5 и 0,35 мкм. Возникла необходимость учета различных тонких физических эффектов. Увеличилась суммарная длина проводников, проводники стали существенным источником запаздывания сигналов. Применявшаяся до сих пор методология проектирования ASIC достигла предела своих возможностей, поскольку определяющим фактором стало качественное проектирование топологии схемы. Компания Cadence воспользовалась имеющимися наработками в сфере размещения/трассировки и представила разработчикам новый метод проектирования топологии (back-end), который позволял специалистам в области проектирования верхнего уровня (front-end) использовать технологии предварительного размещения (1992 год – Preview, 1996 год – Design Planner). С усложнением проектов ИС решающее значение приобрело использование оптимальной методологии проектирования. Эта тенденция развития EDA-индуст-рии была вовремя замечена, и с 1994 года компания Cadence предлагает пользователям не только программные средства, но и поддержку оптимальной методологии проектирования, а также сервисные услуги.

Во второй половине 90-х годов с переходом на нормы проекти-рования 0,25 мкм возникла необходимость еще более тесной ин-теграции логического синтеза и проектирования топологии ИС. Компания Cadence использовала свою систему синтеза Ambit для разработки программы PKS Physical Synthesis, объединяющей синтез и размещение. Вскоре подобный продукт под названием Physical Compiler был выпущен и фирмой Synopsys, а компания Magma разработала метод временной конвергенции с использованием масштабируемых ячеек.

С переходом на субмикронные технологии стали всё чаще появляться отдельные независимые дизайн-центры (fabless company), которые приобретали EDA-средства, необходимые для обеспечения процесса проектирования ИС (Customer Own Tooling, так называемая COT-мoдель). Дизайн-центры осуществляли полный цикл разработки СБИС с использованием собственной методологии и IP-библиотек, а заказы на производство размещали на таких фабриках, как TSMC, UMC и Chartered. С возникновением этой бизнес-модели для EDA-индустрии открылась ещё одна рыночная ниша, в которой можно было предлагать не только продукты, но и технологии проектирования и сервисные услуги.

Выход на рынок среды проектирования Virtuoso компании Cadence в начале 90-х годов позволил на порядок повысить производительность заказного проектирования. Среда Virtuoso постоянно пополнялась большим числом инновационных продуктов. Например, в 1993 году появилась система аналоговогомоделирования Spectre, в 1995 году были добавлены средства моделирования нелинейных радиочастотных (RF) схем, а в 2000 году – средства Verilog-AMS – единого инструмента для совместного цифроаналогового моделирования. Следующий шаг в сторону модернизации был сделан в 1997 году благодаря технологии IC-Craftsman, которую фирма Cadence приобрела при поглощении компании Cooper and Chyan (CCT).

На рубеже тысячелетий началось производство с применением технологических норм 130, 90 и даже 65 нм При использовании таких технологий решающими факторами успеха становится учет паразитных явлений и оценка искажения сигнала. Это означает, что должна учитываться реальная конфигурация соединений. Средств физического синтеза уже недостаточно для получения требуемого результата. Возникла необходимость разработки новых методов. В 2002 году компания Cadence поглотила фирму SiliconPerspective, реализовавшую в продукте First Encounter концепцию виртуального прототипа. Система First Encounter фактически стала стандартом для проектирования с использованием нанометровых технологий.

В настоящее время EDA-индустрия развивается с учётом требований нанометровых технологий и методологии проектирования

"система на кристалле" (systems-on-chip, SoC). Системное проектирование, проектирование схем малой мощности, проектированиес учетом требований производства, интеграция систем – вот лишь некоторые из тех областей, которым разработчики в ближайшие годы должны будут уделить внимание.

Date: 2015-07-17; view: 590; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию