Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Модель Миллса
Пусть в процессе тестирования обнаружено n исходных ошибок и v из S рассеянных ошибок. Тогда оценка N - первоначальное число ошибок в программе - составит . (16) Вторая часть модели связана с проверкой гипотезы выражения и тестирования N. Рассмотрим случай, когда программа содержит К собственных ошибок и S рассеянных ошибок. Будем тестировать программу до тех пор, пока не обнаружим все рассеянные ошибки. В то же время количество обнаруженных исходных ошибок накапливается и запоминается. Далее вычисляется оценка надежности модели: (17) как вероятность того, что в программе содержится K ошибок. Величина С является мерой доверия к модели и показывает вероятность того, насколько правильно найдено значение N. Эти два связанных между собой по смыслу соотношения образуют полезную модель ошибок: первое предсказывает возможное число первоначально имевшихся в программе ошибок, а второе используется для установления доверительного уровня прогноза. Формула для расчета С в случае, когда обнаружены не все искусственно рассеянные ошибки, модифицирована таким образом, что оценка может быть выполнена после обнаружения v (v£S) рассеянных ошибок: (18) где числитель и знаменатель формулы при n £ К являются биноминальными коэффициентами. Пример 3. Предположим, что в программе имеется 3 собственных ошибки. Внесём ещё 6 ошибок случайным образом. В процессе тестирования было найдено: 1) 6 ошибок из рассеянных и 2 собственных; 2) 5 ошибок из рассеянных и 2 собственных; 3) 5 ошибок из рассеянных и 4 собственных. Найти надёжность по модели Миллса - С. K=3, S=6. 1) n=2, v=6, C=(6!/(6-1)!)/((6+3+1)!/(3+6)!)=0,6. 2) n=2, v=5, C=(6!/(5-1)!)/((6+3+1)!/(3+5)!)=0,333333, 2!=2, 4!=24, 6!=720, 8!=40320, 10!=3628800. 3) n=4, v=5, C=1 (по формуле (18)).
Date: 2015-07-17; view: 8783; Нарушение авторских прав |