Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Синтаксис и семантика





При построении формальных символических языков, используемых в разного рода дедуктивных системах, обычно достаточно строго определяют и различают синтаксис и семантику языка. Как мы уже отмечали выше, синтаксис формального языка есть система правил построения различных выражений этого языка – букв алфавита, правильно построенных формул и т.д. - и чисто формальных операций с ними. Именно к синтаксису языка относятся разного рода индуктивные правила построения формул, теорем и других выражений языка. Синтаксис выражает момент формы в языке, получающий свое представление в системе знаков этого языка, в правилах преобразования знаков, не требующих, как это обычно считают, понимания смысла этих знаков. Например, синтаксическими правилами преобразования формул в языке исчисления высказываний является вывод теорем из аксиом в согласии с правилами вывода. Конечно, по-видимому, трудно найти такое преобразование выражений языка, в котором совершенно отсутствовала бы опора на некоторый смысл и содержание. Например, те же правила логического вывода вначале были выведены тем или иным мыслителем из интуиции и других содержательных оснований. Но после того как они были закреплены в форме некоторого искусственного языка, можно было изменить позицию по отношению к этим правилам и рассмотреть их чисто формально – как некоторые фиксированные преобразования знаков, независимо от наполняющего эти знаки смысла. И такой момент независимости логической формы может существовать, как мы уже отмечали, в каждом искусственном языке. Этот момент и доводится до предела, до чистоты в идее синтаксиса языка.

Наверное каждый из нас, решая в школе задачки по математике, замечал, что, проводя преобразования над формулами, можно на время забыть, что именно обозначают эти формулы, и преобразовывать их чисто формально – в согласии с некоторыми правилами вычисления. Например, в решении задачи мы могли столкнуться с формулой t = х(y - z)+ xz и раскрыть здесь скобки, переходя к равносильной формуле t = xy - xz + xz, а затем отбросить последние два слагаемых, получив в итоге величину t = xy. Если аккуратно записать эти преобразования, то мы получим такую последовательность формул:

t = х(y - z)+ xz

t = xy - xz + xz

t = xy + 0

t = xy

При решении таких задач можно отвлечься и забыть, что именно обозначают t, x, y и z, воспринимая их в момент вычислений как некоторые формальные символы, способные обозначать любые числа. Тогда и преобразования с такими значками также приобретут формальный характер, принимающий во внимание лишь форму знаков и правила преобразования этой формы. Вот это и есть момент синтаксиса, чистой формы, в жизни формального языка.

Однако ни один, даже самый формализованный язык, не может обойтись совершенно без обращения к смыслу и содержанию используемых в нем знаков. Более того, как отмечалось выше, именно те искусственные языки, которые обычно называют формальными, - это как правило примеры языков, которые изначально строились таким образом, чтобы их форма обладала максимальным подобием некоторому содержанию. Это может показаться парадоксальным, но только благодаря этому повышенному подобию содержанию, языковая форма впоследствии приобрела возможность самостоятельного существования. Семантика – это система правил, позволяющих наделить определенные выражения языка смыслом и значением. О семантике языка обычно говорят в том случае, когда так или иначе важным моментом становится не только форма языка, но и то, что она обозначает – ее содержание.

Со времени работы немецкого математика Готлоба Фреге «Значение и смысл» стало общепринятым выделение двух видов содержания всякого знака – смысла (коннотата) и значения (денотата). Обычно знак, например, слово «Луна» обозначает некоторый предмет, в данном случае – планету Луну. Такой предмет называют денотатом знака. Но, кроме того, слово «Луна» обладает и некоторым смыслом, который может быть выражен, например, в определении Луны как спутника Земли. Такое смысловое содержание знака называют коннотатом. Придание содержания знаку означает в этом случае связывание со знаком как некоторым языковым объектом его денотата или коннотата. Если для задания содержания знака в языке предполагается достаточным задание только денотатов, то в этом случае говорят об экстенсиональной (или одноуровневой) семантике языка, поскольку денотат еще называют экстенсионалом знака. Если же содержание знака предполагает определение и денотата и коннотата, то говорят об интенсиональной (двухуровневой) семантике языка (т.к. коннотат также называют интенсионалом знака). Экстенсиональные семантики проще, т.е. легче выразить предмет, обозначаемый знаком, чем смысл знака. Например, язык исчисления высказываний или исчисления предикатов предполагает задание как раз экстенсиональной семантики. Заслуга строгого определения семантики для экстенсиональных языков принадлежит польскому логику Альфреду Тарскому, который во многом опирался в решении этой проблемы на идеи своего учителя Станислава Лесьневского. Согласно Тарскому, семантика формального языка есть система правил, которая позволяет каждому выражению из некоторого специального класса всех выражений языка сопоставить его денотат, т.е. некоторый предмет, обозначаемый этим знаком. Как правило, денотатами выражений в формальных языках науки являются различные составляющие тех или иных математических структур, например, числа, вектора, функции и т.д. Более того, формальные языки обычно и создаются с целью описания свойств тех или иных математических структур, например, структур на числах, на векторах, на функциях, на множествах, и т.д. В этом случае необходимо различать саму структуру и тот формальный язык, который ее описывает (по отношению к такому языку математическая структура называется также моделью этого языка). Когда форма искусственного языка создана и, отрываясь от первоначального содержания, получает момент самостоятельности, содержание языка оказывается внешним по отношению к самому языку, начинает отличаться учеными от языка как чисто знаковой системы. Такая установка по отношению к языкам науки получила преобладающее развитие в 20-м веке. Несомненно, момент внешности языковой формы и содержания имеет место, но, по-видимому, не стоит его абсолютизировать. Как мы увидим позднее, именно гипертрофия формального момента в понимании научного познания и его языковых средств привела ко многим проблемам и кризисным явлениям философии науки в последнее время.


Возвращаясь к примеру с математическими вычислениями, мы можем вновь рассмотреть фрагмент вычислений, позволяющий перейти от выражения х(y - z)+ xz к выражению x у. Обычно, в каждой задаче есть какие-то начальные условия, например в форме равенств x = 2 и у = 7. Мы можем подставить на место переменных x и у их частные значения x = 2 и у = 7, данные в начальных условиях, и получить частное значение для выражения x у. Таким образом, получим 2? 7 = 14. В такого рода преобразованиях мы уже приближаемся к заданию содержания знаков. Мы переходим от переменных x и z к их частным значениям 2 и 7. Такая логическая операция носит название подстановки – на место переменных подставляются их частные значения. В результате подстановки у нас получается более конкретное выражение, не содержащее переменных. Именно такие конкретные выражения могут получить свои денотаты. В нашем случае денотатом знака 14 будет число четырнадцать. Здесь следует понимать, что выражение «14» - это не само число, но только его знак в математическом языке. Например, в римской записи оно будет обозначаться через знак XIV, в семиричной системе счисления – через знак 100, и т.д. Что же касается числа четырнадцать, то это некоторый идеальный объект, который невозможно увидеть глазами, но можно только мыслить. Это элемент математической структуры на числах. Так вот, при задании семантики мы связываем знак 14 с идеальным объектом – числом четырнадцать. Только такая связь позволяет нам, оперируя со знаком «14», иметь в виду нечто гораздо большее – идеальную сущность, живущую в нашем сознании и в какой-то форме принадлежащую реальному миру.


Здесь нужно отметить одну интересную особенность построения теории семантики всякой языковой системы. В чистом виде, для выражения семантики, нам нужно было бы вообще выйти за пределы языка, обращаясь к самим денотатам – предметам, числам и т.д. Однако для выражения семантики как теории нам также необходим некоторый язык, в рамках которого мы могли бы выражать как знаки, так и их содержания. В таком «семантическом языке» содержаниями знаков могут становиться сами знаки, а знаки денотатов должны будут заменять собою денотаты для исследуемого языка. Так появляются «более семантические» знаки, через которые в семантике обозначают денотаты некоторой языковой системы L, причем, для самой этой системы знаки денотатов представляют сами денотаты. Говоря об одном языке L, мы не можем не использовать другого языка L *. Язык L *, благодаря которому мы говорим о семантике или синтаксисе языка L, называют в этом случае метаязыком по отношению к L, а язык L – объектным языком по отношению к L *. Так решается парадокс теории языка – мы выходим не вообще за пределы языка, но лишь за пределы объектного языка, оставаясь в рамках метаязыка. Например, говоря о числе четырнадцать как денотате знака «14», мы ведь тоже использовали некоторый знак «число четырнадцать» в рамках русского языка, который играл роль метаязыка в этом случае. Поэтому определение содержания знака «14» может быть символизировано в виде связи двух знаков – знака «14» из объектного языка математики и знака «число четырнадцать» из русского языка. При построении теории семантики как формального языка, для представления денотатов могут использоваться даже те же знаки, что и в объектном языке, но с некоторым дополнительным индексом, указывающим на принадлежность знака семантическому метаязыку.

 

Общенаучные методы познания составляют второй уровень методологии. Это логические приемы обработки информации, при их помощи можно делать выводы из накопленных другими методами знаний. Сюда относятся такие методы, как индукция, дедукция, синтез, анализ, умозаключение, суждение и др.

Диалектика — метод познания явлений действительности в их развитии и самодвижении.

Анализ — расчленение (мысленное или реальное) объекта на элементы.

Синтез — соединение элементов в единое целое.







Date: 2015-07-17; view: 983; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию