Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Функциональные последовательности.
Определение. Если членами ряда будут не числа, а функции от х, то ряд называется функциональным.
Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х, при которых ряд сходится. Совокупность таких значений называется областью сходимости. Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:
Определение. Последовательность { fn(x) } сходится к функции f(x) на отрезке [a,b], если для любого числа e>0 и любой точки х из рассматриваемого отрезка существует номер N = N(e, x), такой, что неравенство
выполняется при n>N. При выбранном значении e>0 каждой точке отрезка [a,b] соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка [a,b], будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка [a,b], т.е. будет общим для всех точек.
Определение. Последовательность { fn(x) } равномерно сходится к функции f(x) на отрезке [a,b], если для любого числа e>0 существует номер N = N(e), такой, что неравенство
выполняется при n>N для всех точек отрезка [a,b].
Пример. Рассмотрим последовательность Данная последовательность сходится на всей числовой оси к функции f(x)=0, т.к.
Построим графики этой последовательности:
Как видно, при увеличении числа n график последовательности приближается к оси х.
Функциональные ряды.
Определение. Частными (частичными) суммами функционального ряда
Определение. Функциональный ряд
Определение. Совокупность всех значений х, для которых сходится ряд
Определение. Ряд
Теорема. (Критерий Коши равномерной сходимости ряда) Для равномерной сходимости ряда
выполнялось бы для всех х на отрезке [a,b]. Теорема. (Признак равномерной сходимости Вейерштрасса) (Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик) Ряд
т.е. имеет место неравенство:
Еще говорят, что в этом случае функциональный ряд
Пример. Исследовать на сходимость ряд Так как При этом известно, что общегармонический ряд
Пример. Исследовать на сходимость ряд На отрезке [-1,1] выполняется неравенство
Свойства равномерно сходящихся рядов. 1) Теорема о непрерывности суммы ряда. Если члены ряда 2) Теорема о почленном интегрировании ряда. Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b], сходится к интегралу от суммы ряда по этому отрезку.
3) Теорема о почленном дифференцировании ряда. Если члены ряда
На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями. На практике часто применяется разложение функций в степенной ряд.
Степенные ряды.
Определение. Степенным рядом называется ряд вида
Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.
Пример. Исследовать на сходимость ряд Применяем признак Даламбера:
Получаем, что этот ряд сходится при Теперь определим сходимость в граничных точках 1 и –1. При х = -1: При х = 1:
Теоремы Абеля. (Нильс Хенрик Абель (1802 – 1829) – норвежский математик) Теорема. Если степенной ряд
Доказательство. По условию теоремы, так как члены ряда ограничены, то
где k - некоторое постоянное число. Справедливо следующее неравенство:
Из этого неравенства видно, что при x<x1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии Поэтому на основании признака сравнения делаем вывод, что ряд
Таким образом, если степенной ряд
Следствие. Если при х = х1 ряд расходится, то он расходится для всех
Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым. Радиус сходимости может быть найден по формуле:
Пример. Найти область сходимости ряда Находим радиус сходимости Следовательно, данный ряд сходится при любом значении х. Общий член этого ряда стремится к нулю.
Теорема. Если степенной ряд
Действия со степенными рядами.
Date: 2016-07-05; view: 349; Нарушение авторских прав |