Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Признак сравнения рядов с неотрицательными членами.





 

Пусть даны два ряда и при un, vn ³ 0.

 

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

 

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 

Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд расходится, то расходится и ряд .

 

Пример. Исследовать на сходимость ряд

Т.к. , а ряд сходится ( как убывающая геометрическая прогрессия), то ряд тоже сходится.

 

Также используется следующий признак сходимости:

Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.

 

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

 

Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд сходится, если же для всех достаточно больших n выполняется условие

то ряд расходится.

 

Предельный признак Даламбера.

 

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.

 

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

 

 

Пример. Определить сходимость ряда

Вывод: ряд сходится.

 

 






Date: 2016-07-05; view: 30; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию