Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теоретическое обоснование





Закон Ома для участка цепи между зажимами a и b (рисунок 1.1) позволяет найти ток участка по разности потенциалов и сопротивлению этого участка:

. (1.1)

Рисунок 1.1 – Участок цепи

Законы Кирхгофа.

Законы Кирхгофа позволяют составить систему уравнений для расчета электрической цепи любой сложности.

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы и ветви. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь, узел – это точка цепи, в которой сходятся не менее трех ветвей.

Первый закон Кирхгофа: алгебраическая сумма токов в узле электрической цепи равна нулю.

. (1.2)

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на элементах контура (под контуром здесь понимается замкнутая последовательность ветвей, не содержащих источников тока) равна алгебраической сумме ЭДС, действующих в этом же контуре:

или . (1.3)

Рассмотрим применение законов Кирхгофа для электрической цепи изображенной на рисунке 1.1.

Рисунок 1.1 – Схема линейной электрической цепи постоянного тока

Определим количество уравнений для расчета электрической цепи постоянного тока. В качестве неизвестных определим токи в ветвях, а известными будем считать параметры элементов электрической цепи. Так по первому закону Кирхгофа записывают уравнений на одно меньше, чем узлов в электрической цепи. На основании первого закона Кирхгофа для узла а схемы, изображенной на (Рисунке 1.1), можно составить следующее уравнение:

(1.4)

По второму закону Кирхгофа записывается столько уравнений, сколько неизвестных токов в ветвях и минус количество уравнений по первому закону Кирхгофа. Согласно второму закону Кирхгофа, для первого и второго контуров цепи, соответственно, можно записать следующие уравнения:

(1.5)

(1.6)

Таким образом, всего уравнений по обоим законам Кирхгофа должно быть столько, сколько неизвестных токов в ветвях цепи. Уравнения (1.4)-(1.6) представляют собой систему линейных уравнений, которая полностью описывает рассматриваемую цепь.

Примером применения второго закона Кирхгофа является построение потенциальной диаграммы. Под потенциальной диаграммой понимают график распределения потенциала на каком-либо участке цепи или в замкнутом контуре. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, а по оси ординат – потенциалы соответствующих точек. Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме.

В качестве примера рассмотрим контур (E1, R1, R3, E2) (Рисунок 1.2).

Рисунок 1.2 – Потенциальная диаграмма

В качестве начальной точки для построения потенциальной диаграммы примем узел b. Для построения потенциальной диаграммы, нужно определить падение напряжения на каждом сопротивлении, входящем в выбранный контур. На участке с сопротивлением потенциал увеличивается, если обход осуществляется против направления тока, и понижается, если направление обхода совпадает с направлением тока.

На участке с источником ЭДС потенциал изменяется на величину ЭДС – повышается в случае, когда переход от одной точки к другой осуществляется по направлению ЭДС и понижается, когда переход осуществляется против направления ЭДС (Рисунок 1.2).

Рассмотрим виды источников электрической энергии.

Идеальным источником постоянного напряжения является такой источник электрической энергии, у которого разность потенциалов между выводами не зависит от тока, проходящего через источник (внутреннее сопротивление такого источника равно нулю). Ввиду конструктивных особенностей реальные источники напряжения обладают ненулевым внутренним сопротивлением, в результате чего выходное напряжение зависит от тока нагрузки.

Поскольку у реального источника постоянного напряжения внутреннее сопротивление не равно нулю, разность потенциалов между его выводами зависит от протекающего через источник тока. Эта зависимость называется внешней характеристикой источника.

Приведенному описанию источника постоянного напряжения соответствует электрическая схема замещения, состоящая из источника ЭДС и соединенного последовательно с ним сопротивления, представленная на рисунке 1.3.

Рисунок 1.3 – Схема замещения неидеального источника напряжения

Величина называется электродвижущей силой (ЭДС) источника и определяется как работа, затрачиваемая сторонними силами на перемещение единицы положительного заряда от отрицательного контакта к положительному. Компоненты схемы замещения реального источника постоянного напряжения, ЭДС, и внутреннее сопротивление источника физически неразделимы.

График внешней характеристики источника напряжения при подключенной нагрузке R показан на рисунке 1.4.

Рисунок 1.4 – Внешняя характеристика источника напряжения

В большинстве случаев внешняя характеристика источника питания имеет почти линейный вид.

Выражение для внешней характеристики источника:

(1.7)

Идеальным источником постоянного тока является такой источник электрической энергии, у которого выходной ток постоянен и не зависит от нагрузки (внутреннее сопротивление такого источника равно бесконечности). Напряжение на выходе идеального источника тока также может изменяться до бесконечности, в зависимости от сопротивления нагрузки, обеспечивая постоянство выходного тока. Ввиду конструктивных особенностей в реальном источнике выходной ток находится в некоторой зависимости от сопротивления нагрузки.

Вольтамперная характеристика идеального источника тока представляет собой вертикальную линию (рисунок 1.5).

Рисунок 1.5 – Внешняя характеристика источника тока

В общем случае зависимость напряжения на выводах от тока источника нелинейна (кривая 1 на рисунке 1.6). Зависимость между выходным напряжением и током называется внешней характеристикой источника тока и определяется двумя характерными точками соответствующими: режиму холостого хода (); режиму короткого замыкания .

Рисунок 1.6 – Аппроксимация внешней характеристики источника тока

Токи и напряжения реального источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует допустимые в пределах спецификации отклонения выходных параметров, наряду с оптимальной экономичностью и долговечностью устройства).

Для упрощения расчетов, в ряде случаев нелинейная вольтамперная характеристика на выбранном рабочем участке m - n, определяемом рабочими интервалами изменения напряжения и тока, может быть аппроксимирована прямой линией.

Для большинства источников тока и напряжения подобная линеаризация правомерна. Также следует отметить, что, в отличие от источников напряжения, для большинства источников тока длительная работа в режиме короткого замыкания является допустимой.

Прямая 2 на рисунке 1.6 описывается линейным уравнением

(1.8)

где – напряжение на зажимах источника при отключенной нагрузке, .

Реальный источник тока замещается эквивалентной схемой (рисунок 1.7), состоящей из идеального источника ()и параллельно включенного резистора с очень высоким сопротивлением .

Рисунок 1.7 – Схема замещения неидеального источника тока

Компоненты схемы замещения реального источника – идеальный источник постоянного тока и внутренняя проводимость (или сопротивление) – физически не разделимы.

Date: 2016-07-05; view: 303; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию