Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Постановка задачи дискретного программирования





 

Под задачей дискретного программирования (ДП) понимается целочисленная задача, в которой все или некоторые переменные должны принимать не любые целые значения.

Особый интерес к задачам ДП вызван тем, что во многих практических задачах необходимо находить целочисленное решение ввиду дискретности ряда значений искомых переменных. Например, мебельная фабрика выпускает диваны, кресла и стулья. Требуется определить, сколько можно изготовить спинок диванов, подлокотников кресел и ножек стульев, если для их изготовления требуются заданные ресурсы, чтобы доход был максимален. При этом следует иметь ввиду, что выпуск спинок может принимать любое целое значение, подлокотники изготавливаются парами, а ножки должны быть кратными четырем.

Рассмотренную задачу распределения ресурсов с учетом требования дискретного значения переменных в общем виде можно записать так:

где

di1, di2,..., dik - дискретные значения, которые может принимать переменная xi.

di =

Данная постановка отличается от задачи распределения ресурсов линейного программирования

появлением булевых переменных и увеличением числа ограничений. На практике к задачам с булевыми переменными можно свести значительное число самых различных задач. Там, где есть варианты, из которых надо выбирать, задачу можно решать с помощью булевых переменных.

Выделяют два метода решения задач с булевыми переменными:

1. Метод полного перебора. Алгоритм метода заключается в следующем:

· в специальной таблице заполняются все варианты сочетаний значений d1, d2,..., dk;

· определяются значения левых частей ограничений и целевой функции и записываются в таблицу;

· вычеркиваются варианты, в которых нарушается по крайней мере одно ограничение;

· из оставшихся вариантов принимается тот, в котором целевая функция принимает максимальное (минимальное) значение.

2. Решаются как обычные задачи целочисленного программирования, т.е. методом ветвей и границ. При этом на каждую переменную накладывается два ограничения: они должны быть в пределах 0£di£1; di должны быть целыми.

 







Date: 2016-07-25; view: 1344; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию