Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Рациональная форма сечения вала





Анализируя эпюру касательных напряжений (рис.5.7) можно отметить, что наибольшие напряжения возникают на поверхности вала, в центральной части они значительно меньше и на продольной оси равны нулю. Следовательно, в сплошном валу материал, находящийся в центральной части в значительной степени недогружен, его вклад в прочность вала мал. Поэтому рациональным для валов считается кольцевое сечение.

 

31 Статические моменты площади и определение положения центра тяжести сечения

Поменять обозначения

 


 

32 Моменты инерции

Поменять обозначения

 

Осевые моменты инерции площади сечения. Осевыми моментами инерции относительно осей x и y называют интегралы вида:

Полярный момент инерции площади сечения. Полярным моментом инерции называется интеграл вида:

.

Если полюс совпадает с началом координатных осей, то выполняется условие

 

.

Осевые и полярные моменты инерции сечения всегда положительны.

Центробежный момент инерции сечения. Центробежным моментом инерции сечения называют интеграл вида

.

Осевые, полярные и центробежные моменты инерции сечения имеют размерность – м4 (см4).

33 Определение осевых моментов простых сечений

Поменять обозначения

 

 

 

35 Изменение моментов инерции при параллельном переносе координатных осей

Момент инерции при параллельном переносе осей

Оси, проходящие через центр тяжести плоской фигуры, называют центральными осями.
Момент инерции относительно центральной оси называется центральным моментом инерции.

Теорема

Момент инерции относительно какой-либо оси равен сумме момента инерции относительно центральной оси, параллельной данной, и произведения площади фигуры на квадрат расстояния между осями.

.

На основании теоремы можно сделать вывод, что из ряда параллельных осей осевой момент инерции плоской фигуры будет наименьшим относительно центральной оси.

36 Главные оси и главные моменты инерции

Главные оси и главные моменты инерции

Представим себе плоскую фигуру, моменты инерции которой относительно осей координат Ix и Iy, а полярный момент инерции относительно начала координат равен Iρ. Как было установлено ранее,

Ix + Iy = Iρ.

Если оси координат поворачивать в своей плоскости вокруг начала координат, то полярный момент инерции останется неизменным, а осевые моменты будут изменяться, при этом их сумма останется величиной постоянной. Поскольку сумма переменных величин постоянна, то одна из них уменьшается, а другая увеличивается, и наоборот.
Следовательно, при определенном положении осей один из осевых моментов достигнет максимального значения, а другой - минимального.

Оси, относительно которых моменты инерции имеют минимальное и максимальное значения, называют главными осями инерции.
Момент инерции относительно главной оси называется главным моментом инерции.

Если главная ось проходит через центр тяжести фигуры, она называется главной центральной осью, а момент инерции относительно такой оси - главным центральным моментом инерции.
Можно сделать вывод, что если фигура симметрична относительно какой-нибудь оси, то эта ось всегда будет одной из главных центральных осей инерции этой фигуры.

37 Основные теоремы о моментах инерции

Эта теорема утверждает, что момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

 

38 Определение положения главных центральных осей и вычисление главных моментов инерции различных сечений

Главные оси инерции и главные моменты инерции.

Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них

Ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

39 Классификация видов изгиба

Под изгибом понимается такой вид нагружения, при котором в поперечных сечения бруса возникают изгибающие моменты. Если в поперечных сечениях бруса возникают только изгибающие моменты - это случай чистого изгиба, если же возникают изгибающие моменты и поперечные силы - это так называемый поперечный изгиб.

40 Прямой чистый изгиб Определение кривизны изогнутой оси и напряжений в поперечном сечении стержня

При прямом чистом изгибе в поперечном сечении стержня возникает то Определим теперь форму упругой линии. Влияние перерезывающих сил Q на прогибы балок, как правило, незначительно. Поэтому с достаточной точностью можно принять, что при поперечном изгибе кривизна упругой линии зависит только от величины изгибающего момента Mz и жесткости EIz (см. уравнение (8.8)):

Только один силовой фактор — изгибающий момент Мх.

Значит, все продольные волокна стержня находятся в одина­ковых условиях, а следовательно, нормальные напряжения во всех точках поперечного сечения должны быть также одинаковы и рав­ны

, (2.2)

где A - площадь поперечного сечения стержня.

41 Особенности прямого поперечного изгиба Распространение расчетных формул, выведенных для чистого изгиба, на поперечный изгиб

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием, т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб, при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы.

42 Касательные напряжения при поперечном изгибе стержня Эпюры касательных напряжений для балок различного сечения

получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского.

где Q(x) – абсолютная величина поперечной силы в том сечении, где вычисляются касательные напряжения;

Jz – момент инерции этого сечения относительно нейтральной оси;

by – ширина сечения в том месте, где определяют τ;

SzOTC – абсолютная величина статического момента отсеченной части профиля относительно нейтральной оси (отсечение производится линией, параллельной нейтральной оси в том месте, где определяют τ).

SzOTC = F1 ∙ yц,т.

 

 

43 Условие прочности стержня при прямом изгибе

словие на прочность при изгибе заключается в том, что максимальное нормальное напряжение в опасном сечении не должно превышать допускаемое.
Полагая, что гипотеза о не надавливании волокон справедлива не только при чистом, но и при поперечном изгибе, мы можем нормальные напряжения при поперечном изгибе определять по такой же формуле, что и при чистом изгибе, при этом расчетная формула выглядит так:

σmax = Миmax / W ≤ [σ]

и читается так: нормальное напряжение в опасном сечении, определенное по формуле σmax = Миmax / W ≤ [σ] не должно превышать допускаемое.
Допускаемое нормальное напряжение при изгибе выбирают таким же, как при растяжении и сжатии.
Максимальный изгибающий момент определяют по эпюре изгибающих моментов или расчетом.
Так как момент сопротивления изгибу W в расчетной формуле стоит в знаменателе, то чем больше W, тем меньшие напряжения возникают в сечении бруса.

Ниже приведены моменты сопротивления изгибу для наиболее часто встречающихся сечений:

1. Прямоугольное сечение размером b x h: Wпр = bh2 / 6.

2. Круглое сечение диаметром d: Wкруг = π d3 / 32 ≈ 0,1d3

3. Кольцо размером D x d: Wкольца = ≈ 0,1 (D4 – d4) / D; (момент сопротивления кольцевого сечения нельзя определять, как разность моментов сопротивления большого и малого кругов).

 

44 Рациональные сечения балок, выполненных из пластичного и хрупкого материалов

Наиболее экономичными являются такие формы поперечных сечений, для которых с наименьшей затратой материала (или при наименьшей площади поперечного сечения) получается наибольшая величина момента сопротивления. Чтобы форма сечения была рациональной, необходимо, по возможности распределять сечение подальше от главной центральной оси.
Например двутавровая стандартная балка примерно в семь раз прочнее и в тридцать раз жестче, чем балка квадратного поперечного сечения той же площади, сделанная из того же материала (рис. 4.15).

Необходимо иметь в виду, что при изменении положения сечения по отношению к действующей нагрузке прочность балки существенно изменяется, хотя площадь сечения и остается неизменной.

Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 27: а—двутавр, б— швеллер, в — неравнобокий уголок, г—равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др.

Рис.11. Используемые профили сечений: а) двутавр, б) швеллер, в) неравнобокий уголок, г) равнобокий уголок

Для балок из хрупких материалов типа чугуна
следует применять сечения, несимметричные относительно нейтральной оси, например: тавровое, несимметричное двутавровое, П-образное (рис. 4.16).

 

Date: 2016-07-22; view: 2146; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию