Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Устройства ввода персонального компьютера. Назначения, характеристики.





В основу архитектуры современных персональных компьютеров положен магистрально-модульный прин­цип. Модульный принцип позволяет потреби­телю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию

.

Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управле­ния.

1. Процессор (CPU). Важнейшей характеристикой процессора, определяющей его быстродействие, является его частота, т. е. количество базовых операций (например, операций сложения двух двоичных чисел), кото­рые производит процессор за 1 секунду. За двадцать с небольшим лет тактовая частота процессора увеличи­лась в 500 раз, от 4 МГц (процессор 8086, 1978 г.) до 2 ГГц (процессор Pentium 4, 2001 г.).

Другой характеристикой процессора, влияющей на его производительность, является разрядность про­цессора. Разрядность процессора определяется коли­чеством двоичных разрядов, которые процессор обра­батывает за один такт. Разрядность процессора увели­чилась за 20 лет в 8 раз. В первом отечественном школьном компьютере «Агат» (1985 г.) был установлен процессор, имевший разрядность 8 бит, у современного процессора Pentium 4 разрядность равна 64 бит.

Процессор может обрабатывать различ­ные виды информации: числовую, текстовую, графи­ческую, видео и звуковую. Процессор является элек­тронным устройством, поэтому различные виды ин­формации должны в нем обрабатываться в форме последовательностей электрических импульсов.

Такие последовательности электрических импуль­сов можно записать в виде последовательностей нулей и единиц (есть импульс — единица, нет импульса — нуль), которые называются машинным языком.

2. Устройства ввода и вывода информации. Человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в фор­ме последовательностей нулей и единиц, следователь­но, в составе компьютера требуются специальные уст­ройства ввода и вывода информации.

Устройства ввода «переводят» информацию с языка человека на машинный язык компьютера, а устройст­ва вывода, наоборот, делают информацию, представ­ленную на машинном языке, доступной для человече­ского восприятия.

Устройства ввода информации. Ввод числовой и текстовой информации осуществляется с помощью клавиатуры. Для ввода графической информации или работы с графическим интерфейсом программ чаще всего применяют манипуляторы типа мышь (для на­стольных персональных компьютеров) и трекбол или тачпад (для портативных компьютеров).

Если мы хотим ввести в компьютер фотографию или рисунок, то используем специальное устройст­во — сканер. В настоящее время все большее распро­странение получают цифровые камеры (фотоаппараты и видеокамеры), которые формируют изображения уже в компьютерном формате.

Для ввода звуковой информации предназначен мик­рофон, подключенный ко входу специальной звуковой платы, установленной в компьютере.

Управлять компьютерными играми удобнее посред­ством специальных устройств — игровых манипуля­торов (джойстиков).

Устройства вывода информации. Наиболее уни­версальным устройством вывода является монитор, на экране которого высвечивается числовая, тексто­вая, графическая и видеоинформация.

Для сохранения информации в виде «твердой ко­пии» на бумаге служит принтер, а для вывода на бу­магу сложных чертежей, рисунков и схем большого формата — плоттер (графопостроитель).

Вывод звуковой информации осуществляется с по­мощью акустических колонок или наушников, под­ключенных к выходу звуковой платы.

3. Оперативная и долговременная память. В компью­тере информация хранится в оперативной (внутрен­ней) памяти. Однако при выключении компьютера вся информация из оперативной памяти стирается.

Долговременное хранение информации обеспечива­ется внешней памятью. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жест­ких магнитных дисках (НЖМД) и оптические нако­пители (CD-ROM и DVD-ROM).

4. Магистраль. Обмен информацией между отдельны­ми устройствами компьютера производится по магистрали.

Подключение компьютера к сети. Человек посто­янно обменивается информацией с окружающими его людьми. Компьютер может обмениваться информа­цией с другими компьютерами с помощью локальных и глобальных компьютерных сетей. Для этого в его состав включают сетевую плату и модем,

Виды памяти ЭВМ.

 

Существуют три вида памяти:

  1. ОЗУ(оперативное запоминающее устройство);
  2. ПЗУ(постоянное запоминающее устройство);
  3. ВЗУ(внешние запоминающие устройства);

Информация, хранимая ПЗУ, не теряется при отклю­чении питания, однако ее невозможно быстро изменять. Если применять перепрограммируемое ПЗУ, можно изменить содержащуюся нем информацию, но для этого надо вынуть ПЗУ, стереть его специальным устройством и занести новую информацию на программаторе ППЭУ. В ПЗУ хранят наиболее часто используемые небольшие программы, например, программу начальной загрузки ядра операционной системы или интерпретатор языка BASIC.

При работе с компьютером часто возникает необходимость изменить данные в памяти компьютера или вводить в нее новые программы. Решить эту проблему позволяет ОЗУ, допускающее как чтение информации из него, так и запись информации в него.

При отключении питания вся информация, хранимая в ОЗУ, теряется. Кроме того, объем оперативной памяти, как: правило, ограничен, а поэтому отсутствует возмож­ность использовать ее для хранения большого коли­чества информации.

Решить эту проблему помогают внешние запоминающие устройства — это накопители на магнитных дисках (гиб­ких их жестких), оптических, лазерных и квазидисках, а также накопители на магнитных лентах. Эти накопи­тели выполняют функции медленной памяти машины, но зато позволяют хранить информацию длительное время, накапливать новую информацию или ликвидировать уже ненужную.

Оперативная и долговременная память. В компью­тере информация хранится в оперативной (внутрен­ней) памяти. Однако при выключении компьютера вся информация из оперативной памяти стирается.

Оперативная память представляет собой множество ячеек, причем каждая ячейка имеет свой уникальный двоичный адрес. Каждая ячейка памяти имеет объем 1 байт.

В персональных компьютерах величина адресного пространства процессора и величина фактически уста­новленной оперативной памяти практически всегда различаются. Например, объем адресуемой памяти может достигать 4 Гбайт, а величина фактически уста­новленной оперативной памяти будет значительно меньше — скажем, «всего» 64 Мбайт.

Оперативная память аппаратно реализуется в виде модулей памяти различных типов (SIMM, DIMM) и разного объема (от 1 до 256 Мбайт). Модули различа­ются по своим геометрическим размерам: устаревшие модули SIMM имеют 30 или 72 контакта, а современ­ные модули DIMM — 168 контактов.

Долговременное хранение информации обеспечива­ется внешней (ВЗУ) памятью. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках (НГМД), накопители на жест­ких магнитных дисках (НЖМД) и оптические нако­пители (CD-ROM и DVD-ROM).

ПЗУ – память, которая хранится в компьютере всегда.

Внешняя память компьютера. Различные виды носителей информации, их характеристики (ин­формационная емкость, быстродействие и др.)

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и т. д.). Устройство, которое обеспечи­вает запись/считывание информации, называется на­копителем или дисководом, а хранится информация на носителях (например, дискетах).

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких маг­нитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах — оп­тический принцип.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляет­ся в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавли­вается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере ин­формации.

Жесткие магнитные диски. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металли­ческий корпус и вращающихся с высокой угловой ско­ростью.

За счет множества дорожек на каждой стороне ди­сков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость дискет и дости­гать 50 Гбайт.

Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски. Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой ви­деодиск) информация записана на одну спиралевид­ную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей спо­собностью. Лазерный луч падает на поверхность вра­щающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки

и приобретает значения 0 или 1.

Для сохранности информации лазерные диски надо предохранять от механических повреждений (цара­пин), а также от загрязнения.

Для пользователя имеют существенное значение некоторые технические характеристики различных устройств хранения информации: информационная емкость, скорость обмена информацией, надежностью хранения (табл. 2).

Таблица 2

Date: 2016-07-22; view: 578; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию