Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Механизм возникновения потенциала покоя на биологических мембранах. Формула Нернста, формула Гольдмана





УТВЕРЖДАЮ

Заведующая кафедрой доцент

Новикова Н.Г.

«____» _____________ 20__ г.

 

ЛЕКЦИЯ № 13

изучения дисциплины «Физика, математика»

на тему: «Механизмы биоэлектрогенеза»

для курсантов I курса по специальности 060101 «Лечебное дело»

по военной специальности – «Лечебное дело в силах флота»

 

Обсуждена на заседании кафедры

«____» _____________ 20__ г.

Протокол № _____

Уточнено (дополнено):

«____» _____________ 20__ г.

 

Санкт-Петербург 2013 г.

Содержание

Учебные вопросы

  Время (мин.)
Введение  
1. Механизм возникновения потенциала покоя на биологических мембранах. Формула Нернста, формула Гольдмана.  
2. Механизм возникновения потенциала действия на возбудимых мембранах  
3. Ионные каналы клеточных мембран  
4. Пороговые раздражители. Критический мембранный потенциал. Явление рефрактерности.  
Выводы и заключение  

Литература

1) Использованная при подготовке лекции:

Медицинская и биологическая физика: Учеб. для вузов / А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко – М.: Дрофа, 2010. – 560 c.

Самойлов В.О. Медицинская биофизика. СПб: Спецлит, 2004.–496 с.

Антонов В.Ф., Коржуев А.В. Физика и биофизика. Курс лекций для студентов медицинских вузов. М.: Изд-во ГЭОТАР-Медиа, 2010. 240 с.

Биофизика. Учебник для вузов. Под ред. Антонова В.Ф. ВЛАДОС, М.: 2006. – 288 с.

Рубин А.Б. Биофизика. В 2 т. Изд-во МГУ: НАУКА, М.:2004.

Физиология человека. Под ред. Р. Шмидта и Г. Тевса. М., Мир, 2004. Пер. с англ. В 3 т. Том 1, гл. 2, с. 26-48; гл. 3, с. 51-66.

Албертс Б., Брей Д., Льюис Д. и др. Молекулярная биология клетки. М., Мир, 1994. Пер. с англ. В 3-х томах. Т. 1, гл. 6, с. 396-406.

Камкин А.Г., Киселева И.С. Физиология и молекулярная биология мембран клеток. М.: Академия, 2008. – 592 с.

 

2) Рекомендуемая обучаемым для самостоятельной работы:

Самойлов В.О. Медицинская биофизика. СПб: Спецлит, 2004.–496 с.

Наглядные пособия

1) Табл. Ш-2, Ш-3.

Технические средства обучения

1) Ноутбук.

2) Мультимедийный проектор

3) Экран

 

 

ТЕКСТ ЛЕКЦИИ

 

Введение

Живые ткани обладают не только пассивными, но и активными электрическими свойствами. Генерация и распространение биопотенциалов (биоэлектрогенез) является одной из важнейших функций биологических мембран. Это явление лежит в основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной системы, регуляции мышечного сокращения, рецепции. В медицине на исследовании электрических полей, созданных за счет биопотенциалов органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие.

Предположения о существовании "животного электричества", то есть о способности живых тканей генерировать электромагнитную энергию, возникли еще в 17 веке. Однако в течение длительного времени считалось, что такой способностью наделены только специальные электрические органы некоторых представителей животного мира (электрических рыб). Экспериментальное доказательство того, что биоэлектрогенез присущ нервам и мышцам лягушки и имеет, таким образом, универсальный характер принадлежит Л. Гальвани (цикл работ 1786-1794 гг.). В ХIX веке биоэлектрические явления во многих тканях различных животных подвергались систематическим исследованиям в лабораториях Э. Дюбуа-Реймона, Л. Германа, И.М. Сеченова, Н.Е. Введенского, В.Я. Данилевского и др. ученых, которые стремились не только наблюдать электрические процессы, протекающие в организме, но и вникнуть в происхождение "животного электричества".

Понимание природы биоэлектрогенеза стало понятным только после появления теории электролитической диссоциации (С. Аррениус, 1887). Первая попытка применения теории электролитической диссоциации к объяснению механизмов биоэлектрогенеза принадлежит В.Ю. Чаговцу, который осуществил это в 1896 г., обучаясь на третьем курсе Военно-медицинской академии. Дальнейшее изучение природы "животного электричества" привело к развитию этих представлений (работы Ю. Бернштейна, А. Ходжкина, А. Хаксли и многих других).

По современным представлениям, биопотенциалы, регистрируемые в организме, - это в основном мембранные потенциалы. Мембранным потенциалом называют трансмембранную разность потенциалов, то есть разность потенциалов между наружной и внутренней сторонами мембраны. Для возникновения трансмембранной разности потенциалов необходимы два обязательных условия: 1) существование концентрационных градиентов электролитов на клеточной мембране; 2) неодинаковая проницаемость этой мембраны для катионов и анионов, на которые диссоциируют электролиты в живых тканях.


 

Механизм возникновения потенциала покоя на биологических мембранах. Формула Нернста, формула Гольдмана

Потенциал покоя – это стационарная разность потенциалов между внешней и внутренней средой клетки, существующая на наружной мембране клетки в невозбужденном состоянии.

Зарегистрировать эту трансмембранную разность потенциалов можно при использовании микроэлектродной техники. Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком (диаметр кончика 0,1-0,5 мкм), заполненную раствором электролита (обычно 3 М раствором KCl). Таким электродом можно проколоть наружную мембрану клетки, не повредив ее. Второй электрод (электрод сравнения) помещают в раствор у наружной поверхности клетки. Регистрирующее устройство, содержащее усилитель постоянного тока, позволяет измерить трансмембранную разность потенциалов. При этом в нервных и мышечных волокнах различных животных регистрируется разность потенциалов, равная примерно 80-90 мВ (за исключением гладкомышечных клеток, потенциал покоя которых ниже (- 30 мВ), причем внутренняя поверхность клеточной мембраны имеет отрицательный потенциал по отношению к внешней.

Как же реализуются обязательные условия биоэлектрогенеза на наружной мембране клетки в состоянии покоя?

1) В цитоплазме позвоночных животных преобладают калиевые соли высокомолекулярных соединений (кислот), тогда как в межклеточной среде гораздо выше концентрация натриевых солей неорганических кислот. Например, в гигантском аксоне кальмара (очень удобном для исследований биоэлектрогенеза в связи с большим диаметром) внутриклеточная концентрация К+ равна 410 ммоль/л, во внеклеточной среде – 10 ммоль/л. Соответственно, концентрация натрия составляет 49 и 460 ммоль/л. Сходные соотношения наблюдаются и в других клетках.

2) В покое проницаемость наружной мембраны клетки для ионов калия значительно больше, чем для натрия, и больше, чем для ионов хлора:

РК+ >> PNa+ PK+ > PCl-

Например, для аксона кальмара:

РК: РNa: PCl = 1: 0,04: 0,45

Эта проницаемость обусловлена наличием в наружной мембране так называемых потенциалнезависимых каналов, избирательно пропускающих ионы калия, натрия или хлора.

Если концентрация какого-либо иона внутри клетки отлична от концентрации этого иона снаружи и мембрана проницаема для этого иона, возникает поток заряженных частиц через мембрану, вследствие чего электрическая нейтральность системы нарушается, образуется разность потенциалов между наружной и внутренней средой, которая препятствует дальнейшему переносу ионов через мембрану. При установлении равновесия между концентрационным и электрическим градиентом выравниваются значения электрохимических потенциалов по разные стороны мембраны и устанавливается равновесный потенциал для этого иона, который рассчитывается по формуле Нернста.


μ = μ0 + RTlnC + zFφ

При равновесии:

RTlnCi + zFφi = RTlnCe + zFφe

Отсюда:

φ равн. = φi – φe =

Если принять, что мембранный потенциал обусловлен только переносом ионов калия, то калиевый равновесный потенциал равен:

φ равн. = < 0 (внутренняя среда имеет отрицательный потенциал)

Если рассчитать по этой формуле величину калиевого равновесного потенциала для Т = 300 К и отношения концентраций, равного 100, то она окажется равной 120 мВ, что несколько больше экспериментально измеренных значений потенциала покоя.

Расчеты показывают также, что для создания такого равновесного потенциала через мембрану клетки должно пройти всего 10-4 % ионов калия от общего их содержания внутри клетки (изменение концентрации калия всего на 2.10-3 ммоль/л). Это пренебрежимое малое количество ионов по сравнению с общим их количеством в клетке.

Причина расхождения рассчитанного по формуле Нернста и экспериментального значения мембранного потенциала состоит в том, что не учтена проницаемость мембраны для других ионов (натрия и хлора). Более точно с экспериментальными данными совпадает результат расчета по уравнению Гольдмана:

 

 

В числителе выражения, представленного под знаком логарифма, представлены концентрации калия и натрия внутри клетки и концентрация хлора снаружи, в знаменателе – наоборот, это связано с тем, что ионы хлора заряжены отрицательно.

Мембранный потенциал, рассчитанный по уравнению Гольдмана, по абсолютной величине меньше мембранного потенциала, рассчитанного по уравнению Нернста, и ближе к экспериментальным значениям.

И формула Нернста, и формула Гольдмана не учитывают активного транспорта ионов через мембрану – наличия в мембране электрогенного биологического насоса – K+-Na+-АТФазы, перекачивающей калий внутрь клетки, а натрий наружу в неравновесных соотношениях. Чаще всего АТФаза работает в режиме 3Na:2K, то есть за счет работы АТФазы мембранный потенциал больше по абсолютной величине, чем мембранный потенциал, рассчитанный по уравнению Гольдмана.

Если прекратить поступление Na+ в клетку, например, путем замещения внеклеточного натрия на такой неспособный к диффузии катион, как холин, то МП будет близок к калиевому равновесному потенциалу.

Нарушение работы K+-Na+-АТФазы приводит к уменьшению мембранного потенциала; в этом случае МП лучше описывается уравнением Гольдмана.

Повреждение клеточной мембраны приводит к повышению проницаемости мембраны для всех ионов. В этом случае разница в проницаемостях сглаживается, МП уменьшается.

Для сильно поврежденных клеток МП еще меньше, но отрицательный мембранный потенциал сохраняется за счет наличия в клетке полианионов – отрицательно заряженных белков, нуклеиновых кислот и других крупных молекул, которые не могут проникнуть через мембрану (доннановский потенциал).


 







Date: 2016-07-22; view: 1072; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.012 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию