Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вероятностный смысл второго начала термодинамики. Флуктуации. Упорядоченность структуры в свете 2 начала термодинамики.





Данное ранее определение энтропии носит несколько формальный характер. Остаётся неясным, почему именно изменение энтропии указывает направление процессов. Первым понял суть дела гениальный физик Людвиг Больцман. Он обратил внимание на то, что разные состояния тела, соответствующие различному расположению молекул (атомов, ионов) и разным значениям их скоростей, осуществляются с очень разной вероятностью. Поясним этот довольно сложный вопрос на относительно простых примерах.

Начнём с простейшего случая, когда в каком-то объёме находятся всего лве одинаковые молекулы „а“ и „б“ Разделим мысленно объём на две половины. Очевидно, что возможны четыре варианта расположения молекул:

слева справа
  а, б ---
  а б
  б а
  --- а, б

Вероятность каждого варианта равна 0,25. Но варианты 2 и 3 практически неотличимы, так как молекулы одинаковы. Поэтому их надо считать за одно состояние, вероятность которого равна 0,5. Таким образом, состояние с равномерным распределением будет встречаться вдвое чаще, чем те состояния, когда обе молекулы слева или обе справа, хотя такие случаи тоже будут наблюдаться. По законам теории вероятностей с ростом числа молекул состояния с равномерным распределением будут иметь всё большую вероятность по сравнению с другими. Скажем, можно ли ожидать, что 40% молекул воздуха сами по себе в результате хаотического теплового движения соберутся в одной половине колбы, а 60% - в другой? В принципе такой случай возможен, но вероятность подобного события исчезающе мала.

В результате глубокого анализа Л.Больцман установил связь между вероятностью состояния и энтропией системы частиц. Эта связь выражается формулой Больцмана: S = k · ln PТД (21).

Здесь k – постоянная Больцмана (k = 1,37.10 –23 Дж.К –1), а РТДтермодинамическая вероятность данного состояния системы.

Термодинамическая вероятность – это число вариантов расположения молекул и распределения их скоростей, соответствующая данному состоянию системы.

По самому смыслу понятия вероятности любая система, предоставленная сама себе (то есть изолированная), будет переходить из состояния с меньшей вероятностью в состояние, вероятность которого больше. Обратный переход в принципе возможен, но практически невероятен. Учитывая формулу Больцмана, мы сразу приходим к формулировке второго начала термодинамики: все реальные процессы в изолированной системе происходят в сторону состояний с большей вероятностью, то есть с увеличением энтропии. Таким образом, второе начало является вероятностным законом.

Флуктуации. Когда мы имеем дело с телами относительно большой массы, содержащими огромное количество молекул, отступления от второго начала практически никогда не наблюдаются. Однако, если мы переходим к малым (микроскопическим) масштабам, отступления от строгих законов теории вероятностей становятся всё более заметными. Например, если в стакане воздуха самопроизвольное отклонение в плотности газа на 1% абсолютно невероятно, то в объёме газа диаметром меньше 1 микрометра (1 мкм = 10 –6 м) подобные колбания плотности водуха на самом деле всё время происходят. Точно так же вследствие хаотичности движения молекул в микроскопических масштабах колеблются давление, энергия, концентрация ионов и многие другие величины. Подобные самопроизвольные колебания физических характеристик, происходящие в микроскопических масштабах, называются флуктуациями.

Флуктуации являются наглядным примером вероятностного характера физических процессов. Абсолютно невозможно точно предсказать, где, когда и в какую сторону изменится, например, плотность в данном объёме газа. Однако, вполне возможно (по крайней мере, в не очень сложных случаях) рассчитать вероятность той или иной флуктуации;такие расчёты многократно проводились в хорошим согласием с опытом.

Флуктуации бывают и в живых организмах. Например, вследствие флуктуаций молекул мембраны каналы, через которые идёт перенос ионов через мембрану, случайным образом то открываются, то закрываются (это можно наблюдать в опыте). Флуктуации в рецепторных клетках заметно влияют на восприятие слабых сигналов (света, звука и др.), которые теряются на фоне флуктуационного „шума“, то есть хаотических колебаний разности потенциалов на мембране, возникающих в результате флуктуаций. Для борьбы с этим явлением живые организмы выработали в ходе эволюции сложные приспособления, о которых не место говорить в данной лекции. Сейчас большое внимание уделяется исследованию флуктуаций в центральной нервной системе; по-видимому, они играют существенную роль во многих нервных процессах.


Особенно интересно, что, как показал Н.В.Тимофеев-Рессовский, возникающее в результате флуктуаций точечное кратковременное возрастание энергии около молекулы ДНК может вызвать мутацию. По мнению Тимофеева-Рессовского, большинство мутаций в обычных условиях возникают именно таким образом.

Упорядоченность структуры в свете второго начала термодинамики

Надо сказать, что понятие термодинамической вероятности является более сложным, чем сформулировано выше. Слишком упрощенное использование этого понятия неоднократно приводило к заблуждениям и грубым ошибкам. Например, можно часто встретить такое рассуждение. Математика показывает, что наиболее вероятным является равномерное распределение частиц, когда в равных объёмах число частиц одинаково. Значит, любая система будет переходить в бесструктурное состояние с равномерным распределением частиц, которому соответствует максимальная вероятность (такое состояние часто называют хаотическим). На самом деле это справедливо только для идеального газа в отсутствие внешних сил; во всех прочих случаях равномерное распределение вовсе не является наиболее вероятным.

Например, в атмосфере молекулы воздуха распределены вовсе не равномерно: внизу их гораздо больше, чем наверху. Причина очевидна: при наличии силы тяжести нахождение молекулы внизу гораздо более вероятно, чем наверху. В этом случае для расчёта вероятности надо использовать более сложную формулу, учитывающую действие силы тяжести. Другой пример: в мембранах клеток молекулы фосфолипидов, образующие мембрану, расположены совсем не хаотически, а почти строго параллельно. При наличии больших сил молекулярного взаимодействия такое расположение оказывается наиболее вероятным. Таких примеров очень много, но они говорят не о нарушении второго начала термодинамики, а о том, что к определению вероятности состояния (то есть термодинамической вероятности) надо подходить очень внимательно, с учётом всех внешних и внутренних сил, действующих в данном конкретном случае.

В общем случае можно показать, что всегда при повышении упорядоченности в каком-то объекте его энтропия понижается, а при уменьшении упорядоченности энтропия объекта возрастает. При этом общая энтропия системы „объект + среда“ всегда увеличивается.

В конце ХХ века возникла новая научная дисциплина, получившая название синергетика, которая изучает процессы самоорганизации, то есть возникновение структуры (упорядоченности) в самых различных объектах. Несмотря на свою молодость, синергетика дала уже много важных результатов при изучении разнообразных процессов в природе, технике и в нашем организме, но эти вопросы выходят за рамки программы нашего курса.

 







Date: 2016-07-22; view: 527; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию