Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов(дуализм), принцип неопределенности ГейзенбергаСтр 1 из 25Следующая ⇒
Планетарная модель атома Резерфорда. Планетарная модель атома, или модель Резерфорда — историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, — подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики. Рассеяние -частиц при прохождении через фольгу вызывается кулоновскими силами, т.е. электрическим взаимодействием частицы и заряда атома. Гравитационное взаимодействие в 10 33 раз меньше, поэтому фактически роли не играет. Электроны не могут этого сделать, так как их масса много меньше массы частицы: m=7350me.При взаимодействии с электронами быстро движущаяся частица не изменяет направление своего движения. Причиной рассеяния частицы является их взаимодействие с положительно заряженными частицами атома, занимающими очень малую область атома. Резерфорд назвал эту область ядром. В ядре сосредоточена почти вся масса атома и весь положительный заряд. Обобщив результаты опытов, Резерфорд предложил следующую модель строения атома:1. в центре атома - положительно заряженное ядро: заряд ядра q = Z·e, где Z-порядковый номер элемента в таблице Менделеева, e =1.6·10-19 Кл - элементарный заряд; размер ядра 10-13 см; масса ядра фактически равна массе атома. 2. электроны движутся вокруг ядра по круговым и эллиптическим орбитам, как планеты вокруг Солнца: электроны удерживаются на орбите кулоновской силой притяжения к ядру, создающей центростремительное ускорение. число электронов в атоме равно Z (порядковый номер элемента), электроны движутся с большой скоростью, образуя электронную оболочку атома. Постулаты Бора В 1913 году Бор показал, что несовпадение с экспериментом выводов, основанных на модели Резерфорда, возникла потому, что поведение микрочастиц нельзя описывать теми же законами, что и макроскопических тел. Бор предположил, что величины характеризующие микромир, должны квантоваться, т.е. они могут принимать только определенные дискретные значения. Законы микромира - квантовые законы! Эти законы в начале 20 столетия еще не были установлены наукой. Бор сформулировал их в виде трех постулатов. дополняющих (и "спасающих") атом Резерфорда. Первый постулат: Атомы имеют ряд стационарных состояний соответствующих определенным значениям энергий: Е1, Е2...En. Находясь в стационарном состоянии, атом энергии не излучается несмотря на движение электронов. Второй постулат: В стационарном состоянии атома электроны движутся по стационарным орбитам, для которых выполняется квантовое соотношение: m·V·r = n·h/2· (1)где m·V·r =L - момент импульса, n=1,2,3..., h-постоянная Планка. Третий постулат: Излучение или поглощение энергии атомом происходит при переходе его из одного стационарного состояния в другое. При этом излучается или поглощается порция энергии (квант), равная разности энергий стационарных состояний, между которыми происходит: = h·= Em-En (2) Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов(дуализм), принцип неопределенности Гейзенберга В 1924 году французский физик Луи де Бройль высказал гипотезу о том, что установленный ранее[1] для фотонов корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию Принцип неопределенности Гейзенберга заключается в том, что в 1926 г. В.Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. В своем принципе неопределенности Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории. Суть принципа неопределенности Гейзенберга состоит в замене физических величин, имеющих место в атомной теории, матрицам - таблицам чисел. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции. Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости. Date: 2016-07-20; view: 462; Нарушение авторских прав |