Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Электронтранспортная дыхательная цепь. Окислительное фосфорилирование.





Электроны с восстановленных переносчиков (НАД-H2, НАДФ-H2, ФАД-H2), образующихся при функционировании ЦТК или окислительного пентозофосфатного цикла, поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее совершенном виде и единообразии дыхательная цепь предстает у эукариот, где она локализована во внутренней мембране митохондрий.

Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т. е. в виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой (флавопротеины, FeS-белки, цитохромы) или небелковой (хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы — электронов.

НАД(Ф)-зависимые дегидрогеназы, катализирующие отрыв водорода от молекул различных субстратов и передающие его на стартовый переносчик дыхательной цепи – НАД(Ф)-H2-дегидрогеназу – растворимые ферменты. Дегидрогеназы флавопротеиновой природы, выполняющие аналогичную функцию, могут быть локализованными в мембране (например, сукцинатдегидрогеназа) или существовать в растворимой форме (ацетил-КоА-дегидрогеназы жирных кислот). Водород с них поступает в дыхательную цепь на уровне хинонов.

Известно более 250 НАД(Ф)-зависимых дегидрогеназ, активно участвующих в реакциях промежуточного обмена. Но не все из них имеют отношение к энергетическому метаболизму. С помощью дегидрогеназ осуществляется перенос гидрид-иона (2 e + Н+ → H) от субстрата к НАД(Ф), при этом в среду переходит протон. Атом водорода входит в состав пиридинового кольца, а электрон присоединяется к азоту пиридинового кольца. После восстановления НАД(Ф)-H2 отщепляется от активного центра фермента и переносится к мембране, где акцептируется флавиновой дегидрогеназой и передает ей восстановительные эквиваленты. Одновременно к дегидрогеназе, освобожденной от кофермента, присоединяется окисленная молекула НАД(Ф), поступающая из среды. Таким образом, особенность НАД(Ф) — их подвижность, позволяющая им курсировать от молекул — доноров электронов, находящихся в цитоплазме, к акцепторам электронов, локализованным в мембране.

В состав флавиновых дегидрогеназ входят флавиновые нуклеотиды, прочно связанные с апоферментом и не отщепляющиеся от него ни на одной стадии каталитического цикла.

Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры. Они входят в состав некоторых флавопротеинов, например сукцинат- и НАД(Ф)-H2-дегидрогеназ, или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат большое число FeS-центров. В митохондриальной электронтранспортной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения FeS-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа.

Хиноны — жирорастворимые соединения, имеющие длинный терпеноидный "хвост", связанный с хиноидным ядром, способным к обратимому окислению — восстановлению путем присоединения 2 атомов водорода. Наиболее распространен убихинон, функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами. В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран.

Цитохромы, принимающие участие на заключительном этапе цепи переноса электронов, представляют собой группу белков, содержащих железопорфириновые простетические группы (гемы). С помощью цитохромов осуществляется перенос электронов, в процессе которого меняется валентность железа:

Fe2+ → Fe3+ + e

В митохондриях обнаружено пять цитохромов (b, c, c1, a, a3), различающихся между собой спектрами поглощения и окислительно-восстановительными потенциалами. Различия по этим параметрам обусловлены белковыми компонентами цитохромов, природой боковых цепей их порфиринов и способом присоединения гема к белкам. Конечные цитохромы (a + a3) передают электроны на молекулярный кислород, представляя собой собственно цитохромоксидазу, в реакционном центре которой содержатся помимо двух гемов два атома меди. Образование воды имеет место при переносе на молекулу кислорода 4 электронов. Некоторые цитохромоксидазы осуществляют перенос на O2 только 2 электронов, следствием чего является возникновение перекиси водорода. Перекись водорода далее разрушается каталазой или пероксидазой.

Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на O2. Последовательность их расположения, подтверждается различного рода данными: значениями окислительно-восстановительных потенциалов переносчиков, ингибиторным анализом.


Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)-H2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому c1. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов a + a3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора — в окисленной форме.

 

Окислительное фосфорилирование, осуществляющийся в живых клетках синтез молекул аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной (АДФ) и фосфорной кислот за счёт энергии окисления молекул органических веществ (субстратов). В результате О. ф. в клетках накапливается АТФ - важнейшее макроэргическое соединение, расходуемое затем на обеспечение энергией различных процессов жизнедеятельности. Основные субстраты О. ф. - органические кислоты, образующиеся в цикле трикарбоновых кислот.

О. ф. было открыто в 1930 советским биохимиком В. А. Энгельгардтом. В 1939 В. А. Белицер и Е. Т. Цыбакова показали, что О. ф. сопряжено с переносом электронов по цепи дыхательных ферментов, встроенных (как было установлено позднее) во внутреннюю мембрану митохондрий. Электроны поступают в дыхательную цепь от восстановленного НАД·Н2 или НАДФ·Н2 и через кофермент Q последовательно передаются от соединений с более отрицательным окислительно-восстановительным потенциалом к соединениям с более положительным потенциалом (см схему выше).

Перенос электронов по цепи завершается восстановлением О2 с помощью сложного ферментного комплекса - цитохромоксидазы. Т. о., процесс окисления субстрата кислородом опосредован серией окислительно-восстановительных реакций; в результате каждой из этих реакций энергия, запасённая в молекуле окисляемого субстрата, освобождается небольшими порциями, что позволяет клетке использовать её более полно. Утилизация высвобождаемой энергии происходит в т. н. пунктах энергетического сопряжения. Синтез АТФ из АДФ и фосфата осуществляется ферментным комплексом АТФ-синтетазой (который может катализировать и обратную реакцию - расщепление АТФ).

Эффективность О. ф. оценивают с помощью отношения Р/О, т. е. количества фосфата, связанного при фосфорилировании АДФ, отнесённого к поглощённому О2. Одна молекула АТФ образуется при переносе 2 электронов через пункт энергетического сопряжения. Р/О при окислении НАДФ·Н2 равно 3, янтарной кислоты – 2.

 

 

Date: 2016-07-05; view: 704; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию