Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Но эти авторы не являются «постмодернистами».
Верно, что французские авторы, которых мы обсуждаем в этой книге не относят сами себя к «постмодернизму» или «постструктурализму». Многие тексты стоят особняком по отношению к интеллектуальным течениям, а некоторые даже в оппозиции. Действительно, идея существования некой «идеи постмодерна» гораздо более распространена в Соединенных Штатах, чем во Франции. Если мы тем не менее, для удобства употребляем этот термин, то потому, что все исследованные здесь авторы являются основополагающими источниками постмодернистского дискурса в Соединенных Штатах. Тем более, что многие особенности их произведений (невнятный язык, предполагаемое неприятие рационального мышления, употребление науки как метафоры) обосновывают правильность такого употребления. Что бы то ни было, значимость нашей критики не может зависеть от употребления одного слова; она должна оцениваться по отношению к каждому автору в отдельности, независимо от того, как он связан, концептуально или лишь социологически, с течением постмодерна в целом.
* * *
Итак, чтобы избежать простого неприятия и полемики, мы настаиваем, что это не направленный против «левых» интеллектуалов «правый» памфлет, или нападки провинциалов на парижскую интеллигенцию, или еще пужадистское[13]воззвание к «здравому смыслу». Напротив, научная точность часто противопоставляет себя «здравому смыслу»; обскурантизм, путаница в суждениях и антинаучная позиция, а также квазирелигиозное преклонение перед «великими мыслителями» вовсе не является обязательной принадлежностью «левых»; и увлечение части американской интеллигенции «постмодернизмом» доказывает факт его интернациональности. В частности, следует подчеркнуть, что здесь не идет речь о «том самом национализме и теоретическом протекционизме», которые обнаруживает Дидье Эрибон у некоторых американских критиков11. Мы хотим просто раскрыть интеллектуальные уловки, откуда бы они ни брались. Если верно, что Соединенные Штаты важная составляющая «постмодернистского» дискурса французского происхождения, то верно и то, что американские интеллектуалы уже давно придали ей национальный облик12.
План исследования
Мы предложим анализ текста, от одного автора к другому. Для удобства наших читателей неспециалистов мы представили краткое объяснение специальных понятий в постраничных сносках и сделали ссылки на качественную популярную литературу. Есть основание решить, что мы придаем слишком много значения этим текстам. В определенном смысле это верно. Поскольку им уже придается много значения большим числом людей, мы решили, что подходить к ним следует с особой тщательностью. Во многих случаях это даже чересчур длинные цитаты, возможно, утомительные для читателя, зато убедительные, по крайней мере в том смысле, что фразы не вырваны из контекста и текст не деформирован. Мы ограничили сами себя теми областями науки, в которых мы можем претендовать на определенную компетентность, на знание физики и математики. Подобный проект мы могли бы осуществить и в области биологии, информатики или лингвистики, но мы оставляем эту задачу более квалифицированным специалистам. Мы проанализировали наряду с собственно уловками и некоторые научные и философские положения, основополагающие для постмодернистского дискурса. Прежде всего это проблема когнитивного релятивизма; мы покажем, что целый ряд идей философии науки и истории вовсе не носят столь радикального характера, который им приписывается (Глава 3). Затем мы разберемся с теми недоразумениями, которые связаны с теорией хаоса и так называемой «постмодернистской наукой» (Глава 6). И, наконец, мы обратим внимание на особый момент во взаимоотношениях философии и науки, во многом иллюстрирующий опасности, подстерегающие тот путь философии, который во многом перекликается с постмодернизмом — это связано с релятивизмом Бергсона, Мерло-Понти и других (Глава 11). В эпилоге мы определим место нашей критики в широком общекультурном контексте. Многие из приведенных здесь текстов (даже французских авторов) первоначально издавались на английском языке. В большинстве случаев, когда есть опубликованный французский перевод, мы использовали именно его; вы его найдете в библиографии. В остальных случаях это наш перевод; мы старались переводить как можно ближе к оригиналу и в тех случаях, когда у нас были сомнения, давали оригинальный текст в скобках. Мы уверяем читателя, что если фрагмент кажется непонятным, так это потому что непонятен сам оригинал.
Жак Лакан
Для этого достаточно признать, что Лакан в конечном счете наделяет мысль Фрейда теми научными понятиями, которые она требует. Луи Альтюссер, Записки по психоанализу (1993, с. 50)
Лакан, как он сам о себе говорит, кристально прозрачный автор. Жан-Клод Мильнер, Ясное произведение (1995, с. 7)
Жак Лакан был одним из наиболее известных и наиболее влиятельных психоаналитиков нашего века. Каждый год анализу его творчества посвящаются десятки книг и статей. По мнению его учеников, он обновил теорию и практику психоанализа, а по мнению его хулителей, сам он был просто шарлатаном, а его тексты — сплошное словоблудие. Мы не будем вмешиваться в спор о собственно психоаналитической составляющей его работ. Мы удовлетворимся анализом его многочисленных ссылок на математику, чтобы показать, что в различных моментах своего творчества Лакан оказывается прекрасной иллюстрацией злоупотреблениям, перечисленным в нашем введении.
«Психоаналитическая топология»
Интерес Лакана к математике главным образом сосредотачивался вокруг вопросов топологии, науки, которая занимается свойствами поверхностей13, остающихся неизменными при их деформации без разрыва14. Уже в текстах Лакана 50-х годов можно найти некоторые отсылки к топологии; но первая обширная и общественно доступная дискуссия такого рода относится к знаменитому конгрессу «Критические языки и гуманитарные науки», который состоялся в университете Джона Хопкинса (Соединенные Штаты) в 1966 году. Вот отрывок из этой дискуссии:
Эта диаграмма [лента Мебиуса15] может быть рассмотрена как основание некоей изначальной надписи, находящейся в ядре, конституирующем субъекта. Это значит гораздо больше, чем вы сперва могли бы подумать, поскольку вы можете поискать тип поверхности, способной принимать такие надписи. Вы, возможно заметите, что сфера, древний символ цельности, не подходит. Подобный разрез способны принимать на себя тор, бутылка Кляйна, поверхность cross-cut16. Причем само разнообразие весьма важно, поскольку оно многое объясняет в структуре душевных заболеваний. Если субъект можно символизировать таким фундаментальным разрезом, то точно так же можно показать, что разрез на торе соответствует невротическому субъекту, а разрез на поверхности cross-cut — другому виду душевного заболевания.(Лакан 1970, с. 192–193)
Возможно, читателю не удастся понять, что общего между этими различными топологическими объектами и структурами душевных заболеваний. Мы тоже не понимаем этого, причем продолжение текста Лакана никак не проясняет этот вопрос. Тем не менее, Лакан настаивает: это «многое объясняет». В тексте дискуссии, которая последовала за выступлением Лакана, можно прочесть следующий диалог:
ГАРРИ ВУЛЬФ: Могу ли я спросить Вас, не являются ли сама эта фундаментальная арифметика и сама эта топология еще одним мифом или, если угодно, аналогией, необходимой для объяснения жизни духа? ЖАК ЛАКАН: Аналогия с чем? 'S' обозначает нечто, что может быть в точности записано как это S. И я сказал, что 'S', обозначающее субъект, является инструментом, материей для символизации определенной потери [loss]. Потери, опытом которой Вы как субъект (и я) владеете. Иначе говоря, это зияние [gap] между вещью, которая обладает отмеченными значениями, и другой вещью, которой является моя реальная речь, которую я пытаюсь поставить на место, где существуете вы, причем не как другие субъекты, а как люди, способные меня понять. Где же тут аналог [analogon]? Или эта потеря существует, или нет. Если она существует, то на неё лишь можно указывать при помощи определенной системы символов. В любом случае эта потеря не существует до того, как символизация не укажет на ее место. И это не аналогия. Этот вид тора в самом деле присутствует на определенном участке реальности. Он существует на самом деле, и он является точной структурой невротика. Это не аналогия, это даже не абстракция, поскольку абстракция — это определенное преуменьшение реальности, а я считаю, что в данном случае это сама реальность. (Лакан 1970, с. 195–196)
И снова Лакан не предлагает никакой аргументации, которая могла бы поддержать его категоричное утверждение, согласно которому тор является «точной структурой невротика». Кроме того, когда ему открыто задают этот вопрос, он отрицает то, что речь идет только о некоей аналогии! В последующие годы Лакан становился все более и более падким на топологию. Текст, относящийся к 1972 году, начинается с игры на этимологии:
В этом пространстве наслаждения взять нечто ограниченное, закрытое — это взять место, и говорить о нем — это значит заниматься топологией. (Лакан 1975а, с. 14)
В этой фразе Лакан использует четыре математических термина («пространство», «ограниченное», «закрытое», «топология»), но при этом он никак не учитывает их значение; с математической точки зрения эта фраза вообще ничего не значит. С другой стороны, Лакан никак не объясняет значимость этих математических понятий для психоанализа. Даже если понятие «наслаждения» имеет в психологии ясное и точное значение, Лакан все равно не дает никакого обоснования, позволяющего рассматривать наслаждение как «пространство» в математическом значении этого термина. Тем не менее, он продолжает:
В тексте, который, как вы увидите, является продолжением моего прошлогоднего выступления, я, по моему мнению, доказываю точную эквивалентность топологии и структуры17. Если следовать вышеизложенному, то обнаружится, что отличие анонимности того, о чем говорят как о наслаждении, то есть о том, что упорядочивается правом, состоит как раз в геометрии. Геометрия — это гетерогенность места, а именно, существование места Другого18. Что позволяют нам сказать об этом месте Другого, о поле как Другом, как абсолютно Другом, самые последние достижения топологии? Здесь я предлагаю ввести термин «компактность»19. Не может быть ничего компактнее зазора, если понять, что, допуская существование пересечения всего того, что закрывается, на бесконечном числе множеств, мы приходим к выводу, что пересечение включает в себя это бесконечное число. Это и есть определение компактности. (Лакан 1975а, с. 14)
Вовсе нет: хотя Лакан использует много ключевых слов математической теории компактности (см. сноску 19), он, произвольно смешивая их, менее всего озабочен их значением. Его «определение» не просто неверно: оно вообще лишено всякого смысла. Кроме того, его «самые последние достижения топологии» относятся к 1900–1930 годам. Лакан продолжает следующим образом:
Это пересечение, о котором я говорю, является тем, что я только что ввел в качестве того, что покрывает, что создает препятствия для предполагаемого сексуального отношения. Только предполагаемого, поскольку я говорю, что аналитический дискурс поддерживается лишь тем тезисом, что сексуального отношения нет, что его невозможно установить. Именно в этом заключается прорыв аналитического дискурса, и именно из этой точки он определяет, каков реальный статус других дискурсов. Таков, если его называть, пункт, покрывающий невозможность сексуального отношения как такового. Наслаждение как таковое фаллично, то есть оно не относится к Другому как таковому. Проследим теперь за этим дополнением гипотезы компактности. Формулу нам дает та топология, которую я охарактеризовал как самую позднюю по времени возникновения, поскольку она отправлялась от логики, построенной на исследовании числа, которое привело к заданию места, которое не является местом гомогенного пространства. Возьмем все то же ограниченное, закрытое, предположительно устойчивое место — эквивалент того, что я только что сказал о пересечении, расширяющемся до бесконечности. Если предположить, что оно покрыто открытыми множествами, то есть множествами, исключающими своей предел — предел, чтобы вам это вкратце напомнить, — это то, что определяется как большее одной точки и меньшее другой, но никогда не равное ни отправной точке, ни конечной20 — обнаруживается доказательство того, что равным образом можно сказать так: множество этих открытых пространств всегда поддается неполному покрытию открытыми пространствами, задающими конечность; то есть последовательность элементов задает конечную последовательность. Вы можете заметить, что я не сказал, что они поддаются пересчету. Но ведь это именно то, что подразумевается термином конечный. В итоге их можно пересчитать один за другим. Но прежде чем добиться этого пересчета, нужно будет найти в них порядок, и мы должны констатировать некоторый промежуток времени, который пройдет до того, как этот порядок окажется обнаружимым21. Что же все-таки подразумевает доказуемая конечность открытых пространств, способных покрывать ограниченное, или — в данном случае — закрытое, пространство сексуального наслаждения? То, что эти пространства могут быть взяты один за другим — а поскольку речь идет и о другой стороне, их нужно поставить в женском роде — одна за другой. Вот что происходит в пространстве сексуального наслаждения — которое поэтому оказывается компактным. (Лакан 1975а, с. 14–15, курсив в оригинале)
Этот текст прекрасно иллюстрирует два «зазора» в дискурсе Лакана. С одной стороны, все это в лучшем случае основано на аналогиях между топологией и психоанализом, которые не оправдываются никаким обоснованием. Но в действительности, даже математические выражения оказываются лишены смысла. В середине 70 годов топологические изыскания Лакана смещаются в сторону теории узлов: см., например, Лакан (1975а, с. 107–123) и особенно Лакан (1975b-е). Более подробную историю его топологических наваждений см. в Рудинеско (1993, с. 463–496). Его ученики создали полные изложения его психоаналитической топологии: см., например, Гранон-Лафон (1985, 1990), Ваппоро (1985, 1995), Насио (1987, 1992), Дармон (1990) и Лейпин (1991).
Мнимые числа
В творчестве Лакана его интерес к математике вовсе не носит какого-то маргинального характера. Уже в 50 годы его тексты были заполнены графами, формулами и так называемыми «алгоритмами». В качестве примера его ссылок на математику процитируем следующий отрывок из семинара 1959 года:
Если вы позволите мне воспользоваться одной из тех формул, что приходят ко мне, когда я делаю свои записи, человеческая жизнь могла бы быть определена как исчисление, в котором нуль был бы иррациональным. Эта формула — не более, чем образ, математическая метафора. Когда я говорю «иррациональный», я ссылаюсь не на некое непроницаемое эмоциональное состояние, а лишь на то, что называют мнимым числом. Квадратный корень из минус единицы не соответствует никакому содержанию нашей интуиции, но, тем не менее, он должен быть сохранен вместе со всей своей функцией. (Лакан 1977, с. 28–29, семинар прошел в 1959 г.)
В этом отрывке, претендуя на некую «точность», Лакан смешивает иррациональные числа с мнимыми22. А они не имеют между собой ничего общего23. Нужно также подчеркнуть, что эти термины «иррациональный» и «мнимый» не имеют ничего общего со своим обыденным или философским значением. Конечно, Лакан осторожно упоминает здесь о метафоре, хотя трудно понять, какую теоретическую функцию эта метафора (человеческая жизнь как «исчисление, в котором нуль был бы иррациональным») может выполнять. Тем не менее, в следующем году Лакан еще более усилил психоаналитическую роль мнимых чисел:
Мы в свою очередь будем отправляться от того, что выражает буквенное сокращение S(∅), то есть от означающего. […] Поскольку тем самым связка означающих дополняется, это означающее может быть лишь чертой, которая прочерчивается из круга означающих, не имея возможности быть подсчитанным в нем. Это символизируется внутренней связью (-1) с множеством означающих. Как таковое его нельзя произнести, но не его действие, поскольку это действие совершается всякий раз, как произносится собственное имя. Его высказывание равно его значению. Откуда вытекает следующая формула, если подсчитать это значение в используемой нами алгебре: S(означающее) / S(означаемое) = S(высказывание) а при S=(-1) мы имеем: s=√-1. (Лакан 1971а, с. 181, семинар состоялся в 1960 году)
Здесь Лакан как будто просто насмехается над людьми. Даже если бы его «алгебра» имела смысл, «означающее», «означаемое» и «высказывание», которые в ней фигурируют, явно не могут быть числами, а горизонтальная черта (произвольно выбранный символ) не означает деления двух чисел. Следовательно, все его «исчисления» — это чистая выдумка24. Тем не менее, двумя страницами ниже Лакан возвращается к той же самой теме:
Несомненно, что Клод Леви-Стросс, комментируя Мосса, хотел признать в этом эффект нулевого символа. Но в нашем случае речь идет, скорее, об означающем отсутствия этого нулевого знака. Вот почему мы отметили, рискуя вызвать недовольство, до какой степени мы сумели довести искажение используемого нами математического алгоритма: символ √-1, который в теории комплексных числе записывается также как i, очевидно, оправдывается лишь тем, что он не претендует ни на какое автоматическое употребление в дальнейшем. […] Вот каким образом эректильный орган начинает символизировать место наслаждения, причем не сам по себе и не в качестве образа, а как часть, недостающая желаемому образу: поэтому-то его и можно приравнять к √-1 более высоко произведенного значения, к √-1 наслаждения, которое он восстанавливает посредством коэффициента своего высказывания в функции нехватки означающего: (-1). (Лакан 1971а, с. 183–185)
Тут мы, конечно, признаем, что весьма занимательно видеть наш эректильный орган отождествленным с √-1. Это напоминает нам Вуди Аллена, который в фильме «Вуди и роботы» противился пересадке мозга: «Вы не должны прикасаться к моему мозгу, это мой второй любимый орган!».
Date: 2016-07-18; view: 266; Нарушение авторских прав |