Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Машины и их классификация





ВОПРОСЫ К ЭКЗАМЕНУ ПО «ТММ» специальности 1705

 

1. Приведите классификацию кинематических пар. Какие пары могут существовать в плоских механизмах.

2. В чем заключаются формулы образования пространственных и плоских механизмов (Малышева. Чебышева).

3. Укажите основные характеристики пассивных звеньев, кинематических пар и приведите примеры.

4. Каковы принципы образования механизмов по Ассуру. Что такое группа Ассура. Приведите основные виды плоских рычажных механизмов образованных группами 2 класса 2 порядка.

5. Структурный анализ механизмов рассмотрите на примере. Обоснуйте основные цели и условия замены в плоских механизмах высших кинематических пар низшими.

6. Каковы основные задачи кинематического исследования механизмов. Понятие о геометрических и кинематических характеристиках. Связь кинематических и передаточных функций.

7. Каковы основные задачи кинематического анализа механизмов. Аналитический метод – способ проекций векторного контура (рассмотреть на примере).

8. Каковы основные задачи кинематического анализа механизмов. В чем заключается метод планов (показать на примере).

9. Каковы основные задачи кинематического анализа механизмов. В чем заключается метод графического дифференцирования диаграмм.

10.Укажите основные задачи проектирования механизмов. Приведите условие нормальной работы, кинематику и параметры, достоинства и недостатки фрикционных передач. Что такое вариатор скорости.

11. Объясните основную теорему зацепления, проанализируйте её следствия.

12. Каковы геометрические элементы зубчатых колёс.

13. Сложные зубчатые механизмы. Приведите последовательность определения передаточного отношения зубчатых сложных передач с промежуточными колесами и валами.

14. Укажите основные определения и виды планетарных передач, объясните их назначение.

15. Проанализируйте на примере аналитический метод кинематического анализа планетарных передач (метод Виллиса).

16. В чем заключается графоаналитический метод кинематического анализа планетарных передач (приведите последовательность действий на примере).

17. Обоснуйте основные задачи и условия синтеза планетарных передач.

18. Что такое волновые механизмы, их основные преимущества, область применения, определение передаточного отношения.

19. Основные критерии синтеза зубчатых зацеплений. Укажите основные свойства эвольвенты окружности. Что такое инволюта угла.

20. Проанализируйте свойства эвольвентного зацепления зубчатых колес.

21. Каковы основные методы изготовления зубчатых колес и особенности геометрии режущего инструмента.

22. Смещение режущего инструмента при нарезании зубчатого колеса. Заострение зуба при смещении.

23. Когда наблюдается и в чём заключается явление подрезания зубьев. Получите минимально-допустимое нарезаемое число зубьев, приведите и проанализируйте основные методы коррегирования зубчатых колес.

24.Каково назначение, классификация, геометрия и кинематика червячных передач.

25. Каково назначение, виды и особенности геометрических параметров винтовых передач.

26. Каково назначение, основные параметры, классификация и структура кулачковых механизмов.

27. Приведите последовательность кинематического анализа кулачковых механизмов методом кинематических диаграмм.

28. Проанализируйте и получите основные зависимости и условия синтеза кулачковых механизмов наименьших размеров.

29.Приведите и сопоставьте между собой основные законы движения толкателя в кулачковых механизмах.

30. В чем заключаются основные задачи силового анализа механизмов. Приведите классификацию сил действующих в механизме.

31. Механические характеристики машин, приведите примеры для машин двигателей и исполнительных машин.

32. Что такое сила инерции, объясните особенности этих сил для тел с вращательным, поступательным и сложным движением.

33. В чём заключается условие кинетостатической определимости кинематических цепей.

34. Приведите последовательность силового анализа механизмов методом планов на примере.

35. В чём заключается метод проф. Н.Е. Жуковского для определения уравновешивающей силы, когда его целесообразнее использовать.

36. Укажите основные режимы движения механизмов и приведите уравнения каждого из них.

37. Прямая задача динамики. Уравнение движения механизма в дифференциальном виде.

38. Что такое динамическая модель машинного агрегата, для чего её используют. Приведение сил и моментов сил к звену приведения.

39. Что такое динамическая модель машинного агрегата, для чего её используют. Приведение масс и моментов инерции масс звеньев в механизме.

40. Проанализируйте установившееся движение машинного агрегата, объясните почему возникает периодическая неравномерность движения и как решается задача её регулирования.

41. Приведите последовательность расчета махового колеса при действии сил зависящих от положения механизма (частный случай J п = const).

42.Вибрации и колебания в машинах. Понятие о неуравновешенности механизма (звена). Метод замещающих масс.

43. Полное и частичное статическое уравновешивание кривошипно-ползунного механизма.

44. Балансировка роторов при статической, моментной и динамической неуравновешенности.

45.Когда возникает трение скольжения, объясните, как направлена и находится сила трение скольжения. Проанализируйте от чего зависит коэффициент трения. Что такое угол и конус трения.

46. В чём заключается условие самоторможения на горизонтальной плоскости, при каких случаях тело будет двигаться ускоренно. Какое трение наблюдается при движении клинчатого ползуна. Что такое приведенный коэффициент трения.

47. Получите основные условия для движения тела вверх и вниз по наклонной плоскости с учетом трения.

48. Приведите последовательность расчета момента необходимого при монтаже и демонтаже резьбового соединения.

49. Укажите особенности трения во вращательной кинематической паре и пятах.

50. Укажите особенности трения гибких тел. Получите формулу Эйлера.

51. Укажите особенности трения качения, когда возможно чистое качение тела.

52. Что такое КПД, приведите основные расчетные формулы для его определения. Как определяется КПД механизма с последовательным соединением звеньев.

53. Что такое КПД, приведите основные расчетные формулы для его определения. Как определяется КПД механизма с параллельным соединением звеньев.

54. Что такое КПД. Как определяется КПД винтовой передачи.


 

Лекция 1

Введение. Цель и задачи курса ТММ. Место курса в системе подготовки инженера. Машинный агрегат и его составные части. Классификация машин. Механизм и его элементы. Классификация механизмов. Краткая историческая справка.

 

Введение. Курс «Теория машин и механизмов» является общетехнической дисциплиной, изучается в течение одного семестра и состоит из: курса лекций объемом 28 часов, практических занятий (включая рубежный контроль) - 12 часов, лабораторный практикум - 12 часов. Курсовая работа с объемом 1 лист графической части и пояснительная записка на 30-50 рукописных (машинописных) страниц. Курсовая работа защищается комиссии из двух преподавателей, по ней проставляется дифференцированная оценка. Семестр завершается экзаменом с учетом рубежного контроля, выполненной контрольной работы и защищенным лабораторным работам.

Курс ТММ базируется на знаниях полученных студентом на младших курсах при изучении физики, высшей математики, теоретической механики, инженерной графики и вычислительной техники. Знания, навыки и умение приобретенные студентом при изучении ТММ служат базой для курсов детали машин, основы конструирования элементов химического оборудования, машины и аппараты химических производств.

 


Рекомендуемая основная литература

1. Теория механизмов и машин. Под ред. К.В.Фролова. М.: Высшая школа, 1987.

2. Артоболевкий И.И. Теория механизмов и машин. - М.: Наука, 1988.

3. Левитский Н.И. Теория механизмов и машин. - М.,: Наука, 1990.

4. Семенов М.В. Структура и кинематика механизмов.- Л.: СЗПИ, 1967.

5. Семенов М.В. Динамика механизмов.- Л.: СЗПИ, 1968.

 

Рекомендуемая дополнительная литература

1. Артоболевский И.И., Эдельштейн Б.В. Сборник задач по теории механизмов и машин. М., 1973 г.

2. Кожевников С.Н. Теория механизмов и машин. М., 1975 г.

3. Кореняко А.С. Курсовое проектирование по теории механизмов и машин. М-К.:, 1964 г.

4. Безвесельный. Курсовое проектирование по теории механизмов и машин в примерах. Харьков, 1960 г.

5. Попов С.А. Курсовое проектирование по теории механизмов и машин. М., 1986 г.

 


Цель и задачи курса

 

Теория механизмов и машин - научная дисциплина об общих методах исследования свойств машин и механизмов и проектирования их новых схем. Она изучает строение (структуру), кинематику и динамику механизмов в связи с их анализом и синтезом.

Цель ТММ - анализ и синтез типовых механизмов и их систем.

Задачи ТММ: разработка общих методов исследования структуры, геометрии, кинематики и динамики типовых механизмов и их систем.

Основные разделы курса ТММ:

· структура механизмов и машин;

· геометрия механизмов и их элементов;

· кинематика механизмов;

· динамика машин и механизмов.

 

Изучение курса начнем с общих определений:

Машины и их классификация

 

Машина - техническое устройство, выполняющее преобразование энергии, материалов и информации с целью облегчения физического и умственного труда человека, повышения его качества и производительности.

Существуют следующие виды машин:

1. Энергетические машины - преобразующие энергию одного вида в энергию другого вида. Эти машины бывают двух разновидностей:

Двигатели (рис.1.1), которые преобразуют любой вид энергии в механическую (например, электродвигатели преобразуют электрическую энергию, двигатели внутреннего сгорания преобразуют энергию расширения газов при сгорании в цилиндре).


 

 

Pэл (U, I) Pмех (M, )

Двигатель

 

Рис.1.1

 

Генераторы (рис.1.2), которые преобразуют механическую энергию в энергию другого вида (например, электрогенератор преобразует механическую энергию паровой или гидравлической турбины в электрическую)

 

Pмех (M, ) Pэл (U, I)

Генератор

Рис.1.2

 

2. Рабочие машины - машины использующие механическую энергию для совершения работы по перемещению и преобразованию материалов. Эти машины тоже имеют две разновидности:

Транспортные машины (рис.1.3), которые используют механическую энергию для изменения положения объекта (его координат).

Pмех (M, )

Транспортная

машина

f (x0,y0) f (xn,yn)

Рис.1.3

Технологические машины (рис.1.4), использующие механическую энергию для преобразования формы, свойств, размеров и состояния объекта.


 

 

Pмех (M, )

Технологическая

машина

f (x0, y0, z0) f (xn, yn, zn)

Рис.1.4

3. Информационные машины - машины, предназначенные для обработки и преобразования информации. Они подразделяются на:

Математические машины (рис.1.5), преобразующие входную информацию в математическую модель исследуемого объекта.

Математическая

машина

I0, Кбит In, Кбит

Рис.1.5

Контрольно-управляющие машины (рис.1.6), преобразующие входную информацию (программу) в сигналы управления рабочей или энергетической машиной.

 

I0

Программа Контр.-упр. машина

       
 
   
 


Ii Ii

 
 


Рабочая машина

Рис.1.6

4. Кибернетические машины (рис.1.7) - машины управляющие рабочими или энергетическими машинами, которые способны изменять программу своих действий в зависимости от состояния окружающей среды (т.е. машины обладающие элементами искусственного интеллекта).

 
 


Окружающая среда

           
     


Ij

I0

Программа Контр.-упр. машина

       
 
   
 


Ii Ii

 
 


Рабочая машина

Рис.1.7

Машинный агрегат

Машинным агрегатом (рис. 1.8) - называется техническая система, состоящая из одной или нескольких соединенных последовательно или параллельно машин и предназначенная для выполнения каких-либо требуемых функций. Обычно в состав машинного агрегата входят: двигатель, передаточный механизм и рабочая или энергетическая машина. В настоящее время в состав машинного агрегата часто включается контрольно-управляющая или кибернетическая машина. Передаточный механизм в машинном агрегате необходим для согласования механических характеристик двигателя с механическими характеристиками рабочей или энергетической машины.

 
 

 


Двигатель Передаточный механизм Рабочая машина

       
 
 
   

 

 


Контрольно-управляющая машина

Рис.1.8

Типовыми механизмами будем называть простые механизмы, имеющие при различном функциональном назначении широкое применение в машинах, для которых разработаны типовые методы и алгоритмы синтеза и анализа.

Рассмотрим в качестве примера кривошипно-ползунный механизм. Этот механизм широко применяется в различных машинах: двигателях внутреннего сгорания, поршневых компрессорах и насосах, станках, ковочных машинах и прессах. В каждом варианте функционального назначения при проектировании необходимо учитывать специфические требования к механизму. Однако математические зависимости, описывающие структуру, геометрию, кинематику и динамику механизма при всех различных применениях будут практически одинаковыми. Главное или основное отличие ТММ от учебных дисциплин изучающих методы проектирования специальных машин в том, что ТММ основное внимание уделяет изучению методов синтеза и анализа, общих для данного вида механизма, независящих от его конкретного функционального назначения. Специальные дисциплины изучают проектирование только механизмов данного конкретного назначения, уделяя основное внимание специфическим требованиям. При этом широко используются и общие методы синтеза и анализ, которые изучаются в курсе ТММ.

Если при рассмотрении структуры машины для её элементов, не принимается во внимание их форма и внутреннее строение, а рассматривается только выполняемые ими функции, то такие элементы называются функциональными. Для механической системы элементами могут быть: деталь, звено, группа, узел, простой или типовой механизм.

Деталь - элемент конструкции не имеющий в своем составе внутренних связей (состоящий из одного твердого тела).

Звено - твердое тело, или система жестко связанных твердых тел (может состоять из одной или нескольких деталей), входящее в состав механизма и совершающее особое относительное движение по отношению к другим телам. Одно из звеньев механизма всегда неподвижно – это стойка.

Стойка - звено, которое при исследовании механизма принимается за неподвижное (корпус механизма).

Звенья механизма связаны между собой кинематическими парами. Кинематическая пара – это подвижное соединение двух соприкасающихся звеньев.

Группа - кинематическая цепь, состоящая из подвижных звеньев, связанных между собой кинематическими парами (отношениями), и удовлетворяющая некоторым заданным условиям.

Узел - несколько деталей связанных между собой функционально, конструктивно или каким-либо другим образом.

С точки зрения системы узлы, группы, простые или типовые механизмы рассматриваются как подсистемы. Самым низким уровнем разбиения системы при конструировании является уровень деталей; при проектировании - уровень звеньев. Элементы из системы можно выделить только после определения взаимосвязей между ними, которые описываются отношениями. Для механических систем интерес представляют отношения определяющие структуру системы и ее функции, т. е. расположения и связи. Расположения - такие отношения между элементами, которые описывают их геометрические относительные положения. Связи - отношения между элементами, предназначенные для передачи материала, энергии или информации между элементами. Связи могут осуществляться с помощью различных физических средств: механических соединений, жидкостей, электромагнитных или других полей, упругих элементов.

Механические соединения могут быть подвижными (кинематические пары) и неподвижными. Неподвижные соединения делятся на разъемные (винтовые, штифтовые) и неразъемные (сварные, клеевые).

Механизмом называется система твердых тел, предназначенная для передачи и преобразования заданного движения одного или нескольких тел в требуемые движения других твердых тел.

Кинематическая цепь - система звеньев, образующих между собой кинематические пары.

Число степенейсвободы или подвижность механизма - число независимых обобщенных координат, однозначно определяющее положение всех его звеньев на плоскости или в пространстве.

Из теоретической механики: Системы материальных тел (точек), положения и движения которых подчинены некоторым геометрическим или кинематическим ограничениям, заданным наперед и не зависящим от начальных условий и заданных сил, называется несвободной. Эти ограничения, наложенные на систему и делающие ее несвободной называются связями. Положения точек системы, допускаемые наложенными на нее связями называются возможными. Независимые друг от друга величины однозначно определяющие возможные положения системы в произвольный момент времени называются обобщенными координатами системы.

Входные звенья - звенья, которым сообщается заданное движение или соответствующие силовые факторы (силы или моменты); выходные звенья - те, на которых получают требуемое движение и силы.

Начальное звено - звено, координата которого принята за обобщенную. Начальная кинематическая пара - пара, относительное положение звеньев в которой принято за обобщенную координату.

Рассмотрим пример механизма представленного на рис. 1.9: он состоит из трех подвижных звеньев, одного неподвижного звена – стойки и четырёх кинематических пар (все они разрешают только вращательное движение), (звенья на структурной схеме обозначаются цифрами; кинематические пары буквами латинского алфавита, соединения со стойкой нумерацией стойки с индексом соединяемого подвижного звена – 01, 03).

 

           
   
   
 
 
 


B C

       
 
   
 


1 2 3

 

01 03

0

 

 

Рис. 1.9

Строение механизмов

 

Какотмечалось выше, структура любой технической системы определяется функционально связанной совокупностью элементов и отношений между ними. При этом для механизмов под элементами понимаются звенья, группы звеньев или типовые механизмы, а под отношениями подвижные (кинематические пары) или неподвижные соединения. Поэтому под структурой механизма понимается совокупность его элементов и отношений между ними, т.е. совокупность звеньев, групп или типовых механизмов и подвижных или неподвижных соединений. Геометрическая структура механизма полностью описывается заданием геометрической формы его элементов, их расположения, указания вида связей между ними. Структурная схема - графическое изображение механизма, выполненное с использованием условных обозначений рекомендованных ГОСТ (см. например ГОСТ 2.703-68) или принятых в специальной литературе, содержащее информацию о числе и расположении элементов (звеньев, групп), а также о виде и классе кинематических пар, соединяющих эти элементы. В отличие от кинематической схемы механизма, структурная схема не содержит информации о размерах звеньев и вычерчивается без соблюдения масштабов. (Примечание: кинематическая схема - графическая модель механизма, предназначенная для исследования его кинематики).

Задачей структурного анализа является определение параметров структуры заданного механизма - числа звеньев и структурных групп, числа и вида кинематических пар, числа подвижностей (основных и местных), числа контуров и числа избыточных связей.

Задачей структурного синтеза является синтез структуры нового механизма, обладающего заданными свойствами: числом подвижностей, отсутствием местных подвижностей и избыточных связей, минимумом числа звеньев, с парами определенного вида (например, только вращательными, как наиболее технологичными) и т.п.

Степень подвижности механизма - число независимых обобщенных координат однозначно определяющее положение звеньев механизма на плоскости или в пространстве.

Связь - ограничение, наложенное на перемещение тела по данной координате.

Избыточные (пассивные) - такие связи в механизме, которые повторяют или дублируют связи, уже имеющиеся по данной координате, и поэтому не изменяющие реальной подвижности механизма. При этом расчетная подвижность механизма уменьшается, а степень его статической неопределимости увеличивается. Иногда используется иное определение: Избыточные связи - это связи, число которых в механизме определяется разностью между суммарным числом связей, наложенных кинематическими парами, и суммой степеней подвижности всех звеньев, местных подвижностей и заданной (требуемой) подвижностью механизма в целом.

Местные подвижности - подвижности механизма, которые не оказывают влияния на его функцию положения (и передаточные функции), а введены в механизм с другими целями (например, подвижность ролика в кулачковом механизме обеспечивает замену в высшей паре трения скольжения трением качения).

 

Date: 2016-07-18; view: 648; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.004 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию