Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Хроматическое определение информации
При взаимодействии светового потока s с селективно поглощающим образцом приближение (6) включает поглощаемую al и пропущенную tl компоненты. Вместе с тем информационный поток нередко также подразделяют на компоненты связанной и свободной информации. При этом под связанной принято понимать такой вид информации, который коррелирует с составом компонентов и межкомпонентных взаимодействий по типу относительно устойчивых функциональных состояний систем, обладающих внутренней структурной информацией (Н. Винер). Отсюда следует, что формализация семантики светоцветовых потоков является наиболее актуальной для адекватной семантизации именно связанной информации. Поэтому в первом приближении моделирование информационных кодов цветового пространства можно свести к его представлению через относительную сумму длин волн li как функцию lо. При этом очевидное условие согласования алфавитов излучения и вещества дает возможность определения свободной t и связанной a информации по формуле
Здесь lо — длина волны, определяющая доминирующий цвет распределением вероятностей li в; l1 и l2 — длины волн (коррелирующие с парой дополнительных цветов), которые с вероятностями a и t при аддитивном сложении дают ахромный (белый) цвет излучения slо; s, a и t — относительные количества исходной, связанной и свободной информации, которые могут быть представлены спектральными коэффициентами яркости, поглощения и отражения, соответственно. Вообще говоря, энергия, энтропия, а, следовательно, и информация относятся к экстенсивным величинам, что легко доказывается в системе размерностей [LIT], где за основные величины приняты L — пространство, I — информация, T — время[mcccxvi]. Отсюда вытекает, что в качестве информационных атрибутов могут быть использованы любые экстенсивные относительные величины типа яркости, потока или плотности излучения. Согласно равенству (16), коэффициенты s, a и t можно полагать вероятностями осуществления релевантных кодов li. Действительно, поскольку они моделируют относительное количество информации в потоке, то могут быть представлены в виде отношений
Здесь I0 — исходное количество информации (на входе); I — количество преобразованной в системе информации, которую можно отнести к свободной (на выходе); (I 0 — I) — количество связанной в системе информации. Таким образом, именно относительные (то есть приведенные к I0) величины определяют вероятности связанных и / или свободных состояний информации в системе. Обратим внимание на величину a, смысл которой в (2) явно коррелирует с законом Бугера-Вебера, где I0 — величина “адаптированного” раздражителя; I0 — I — разностный порог. Иначе говоря, вероятность a может характеризовать искомую связь между объективными, по формуле (17), и субъективными, по закону Бугера-Вебера, величинами для одномерных сенсорных раздражителей. В соответствии с этим отнесением t может определять характер свободной (то есть, не взаимодействующей по коду l1 с компонентами системы) информации. Согласно же теории вероятностей, величина 1/t будет определять негэнтропийный активный (актуализированный) характер связанной информации, которая взаимодействует с компонентами системы по коду l1. Отсюда вытекает хроматическое определение “информации”[mcccxvii], которое подразумевает учет и энтропийных, и негэнтропийных характеристик сигнала: информация — это согласованное распределение вероятностей источника по релевантным кодам связанных и свободных состояний приемника. Согласно закону сохранения энергии, это определение позволяет представить известное условие нормировки вероятностей как принцип сохранения вероятностей состояний в замкнутой системе:
Принцип (18) в приближении (16) позволяет оценить относительные количества связанной a и свободной t информации по заданным (17) кодам li:
где a и t характеризуют отношения одноименных величин в виде разностей, которые включают их распределение по взаимосогласованным кодам li. Как следует из формул (8) и (19), разности величин l1, l2 для r и t оказываются идентичными в заданном приближении. В соответствии с равенствами (17) и (19) несложно выразить количество исходной I0, связанной Ia и свободной It информации в абсолютных единицах через разности распределения вероятностейli:
где il — спектральная плотность информации, бит×нм–1. Приведенные зависимости позволяют предположить возможным принцип сохранения информации в замкнутой системе (I0 = Ia + It). Сопоставление этих определений с представленными выше данными по оппонентной теории цветовосприятия показывает, что информация, которую пропускает (отражает) образец, определяется разностью между распределением вероятностей исходной l0 и связанной l1 информации. По-видимому, именно в силу оппонентного характера цветовосприятия исходное количество информации I0 определяется не суммой распределения вероятностей (l2+ l1), а разностью (l2 — l1), как это следует из формулы (20). Согласно закону Бугера-Ламберта, ослабление излучения на элементарном слое вещества пропорционально потоку излучения и толщине этого слоя. Следовательно, исходное количество информации Io после прохождения сигнала (физического процесса, несущего информацию) через элементарный компонент dc системы С уменьшается на dI, откуда
где k(l) — относительное уменьшение информационного потока на единичном компоненте c, то есть количество информации, которое поглощается в единицу времени единичным компонентом системы. Поскольку k(l) определяется согласованием свойств потока и системы, далее можно называть эту величину показателем связывания информации системой. В силу того, что величина k(l) связана с уровнем согласованности алфавитов информационного потока Io и компонентов системы с по длине волны li, можно допустить полное согласование, то есть постоянство k(l) для ахромного потока и системы однородных компонентов и, следовательно, интегрировать равенство (21). Отсюда получаем относительную величину информационного пропускания Т
или, согласно (17)
где t — коэффициент свободной информации, согласованный в (20) по коду l2; k(l) — показатель связывания информации, согласованный по коду l1; с — число компонентов системы, на которое приходится k(l) связанной информации. Легко показать смысловую связь определения (22) с законом Вебера-Фехнера, с одной стороны, и с формулой Хартли для количества информации, с другой. Это позволяет величину k(l) измерять в битах (в двоичной системе счисления k(l)2 = 3,32 k(l)) при измерении с в бит–1. Согласно формулам (16), (19) и (23), величина информационного пропускания T коррелирует с вероятностным отношением свободной It к исходной Io информации. Это дает основание распространить свойство аддитивности на величину k(l):
Здесь å k(l)i — суммарный показатель (связанной компонентами сi) информации, то есть количество информации, бит; сi — количество компонентов системы, приходящееся на k(l) бит информации согласно их согласованности, по формуле (22); t — вероятности состояний с распределением вероятностей по коду пропускания l2 в приближении (16). Рассмотрение частных случаев зависимости k(l,t) для источника белого света и ахромных цветов приемника приводит к следующим результатам: · для белого цвета, то есть при t = 1 количество связанной информации k(l) = 0, · для черного цвета, то есть при t ® 0 величина k(l) ® 0 и · для средне-серого цвета, то есть при t = a величина k(l) =1. Эти данные позволяют предположить определенную общность функции (24) с известным представлением количества информации, по Шеннону[mcccxviii]:
где Н — количество информации в сообщении, включающем i состояний с вероятностями рi. · Действительно, согласно формуле (25), при замене состояния неопределенности состоянием полного знания (то есть, когда вероятности выборов всех символов, кроме одного, равны нулю, а вероятность выбора этого символа равна 1), получаем Н=0, что и было показано для белого цвета, по формуле (24). · При выборе символов из неизвестного получателю алфавита, то есть при полном отсутствии знаний, по формуле (25) получаем Н®0, что мы получили для черного цвета по формуле (24). · И, наконец, как и для серого цвета, максимальное значение Н=1 достигается по формуле (25) при равновероятных символах. Вместе с тем, между формулами (24) и (25) наблюдаются и существенные расхождения. Во-первых, согласно научной традиции и теории размерностей, вероятность (как отношение безразмерных и / или одноименных величин) не может обладать размерностью или порождать ее. Во-вторых, соотношение (25) является безразмерностным, что противоречит собственно семантике “информационной энтропии” в любой системе размерностей и единиц измерения. И, наконец, в-третьих, “информационная энтропия” может быть соотнесена с реальной термодинамической энтропией только при 0 0К, где и могут быть уравнены термодинамическая и математическая вероятности, что, как известно, всегда затрудняло семантическую интерпретацию соотношения (25). Соотношение же (24) на основе хроматической модели позволило представить как собственно понятие “информация”, так и распределение информационных потоков между источником и приемником. Безусловно, информационная модель теории оппонентного цветовосприятия требует дальнейшей корректировки.
Date: 2016-11-17; view: 232; Нарушение авторских прав |