Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Движение крови по сосудам.





Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной ниже.

Кровяное давление—давление крови на стен­ки кровеносных сосудов. Нормальное кровяное давление необхо­димо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основ­ных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилля­ров; объема циркулирующей крови.

Различают артериальное, венозное и капиллярное давление крови.

Артериальное кровяное давление. Величина артериального давления у здорового человека является довольно постоянной, Од­нако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Систолическое (максимальное) давление отра­жает состояние миокарда левого желудочка сердца. Его величина 100—120 мм рт. ст.

Диастолическое (минимальное) давление ха­рактеризует степень тонуса артериальных стенок. Оно равняется 60—80 мм рт. ст.

Пульсовое давление — это разность между си­столическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапа­нов во время систолы желудочков. В норме пульсовое давление составляет 35—55 мм рт. ст. Если систолическое давление станет равным диастолическому - движение крови будет невозможным и наступит смерть.

Среднее артериальное давление равняется сумме диастолического и '/з пульсового давления.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т.д.

С возрастом максимальное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям.

Повышение артериального давления называется гипертонией. Понижение артериального давления называется гипотонией. Гипотония может наступить при отравлении наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Артериальный пульс. Это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желу­дочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой арте­рии в нижней трети предплечья, где она расположена наиболее поверхностно;

Пальпаторно определяют следующие качества пуль­са: частоту —количество ударов в 1 мин, ритмич­ность — правильное чередование пульсовых ударов, наполнение — степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряже­ние —характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Кровообращение в капиллярах. Эти сосуды пролегают в межклеточных пространствах, тесно примыкая к клеткам органов и тканей организма. Общее количество капилляров огромно. Сум­марная длина всех капилляров человека составляет около 100 000 км, т. е. нить, ко­торой можно было бы 3 раза опоясать земной шар по экватору.

Скорость кровотока в капиллярах невелика и составляет 0,5-1 мм/с. Таким обра­зом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина этого слоя и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и межклеточной жидкостью.

Различают два вида функционирующих капилляров. Одни из них образуют кратчай­ший путь между артериолами и венулами (магистральные капилляры). Другие представ­ляют собой боковые ответвления от первых; они отходят от артериального конца магист­ральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях.

В каждом органе кровь течет лишь в «дежурных» капиллярах. Часть же капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возра­стает. В то же время в капиллярах начинает циркулировать кровь, богатая эритроцитами — переносчиками кислорода.

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов осуществляются посред­ством воздействия на артерии и артериолы. Их сужение или расширение изменяет коли­чество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, изменяет состав крови, протекающей по капиллярам, т. е. соотношение эритроци­тов и плазмы.

Величина давления в капиллярах тесно связана с состоянием органа (покой и активность) и теми функциями, которые он выполняет.

Артериовенозные анастомозы. В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и вен — артериовенозные ана­стомозы. Это наиболее короткий путь между артериолами и венами. В обычных условиях анастомозы закрыты, и кровь проходит через капиллярную сеть. Если анастомозы откры­ваются, то часть крови может поступать в вены, минуя капилляры.

Таким образом, артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этому является изменение капиллярного кро­вообращения в коже при повышении (свыше 35 °С) или понижении (ниже 15 °С) внеш­ней температуры. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.

Движение крови в венах. Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 140 мм рт. ст., то в венулах оно составляет, 10—15 мм рт. ст. В конечной части ве­нозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факто­ров. А именно: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающаяся функция грудной клетки.

Работа сердца создает разность давлений крови в артериальной системе и правом предсердии. Это обеспе­чивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном на­правлении — к сердцу. Чередование сокращений и расслабление мышц является важным фактором, способст­вующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвига­ется по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц по­лучило название мышечного насоса, который является помощником основного насоса — сердца. Вполне понят­но, что движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызыва­ет расширение венозных сосудов области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

В мелких и средних венах отсутствуют пульсовые колебания давления крови. В крупных венах вблизи сердца отмечаются пульсовые колебания – венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. При систоле этих отделов сердца давление внутри вен повышается и происходит колебания их стенок.

Нервная регуляция сосудистого тонуса. Современные данные свидетельствуют о том, что симпатические нервы для сосудов являются возоконстрикторами (суживают сосуды). Сосудосуживающее влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.

Сосудорасширяющие нервы (вазодилататоры) имеют несколько источников. Они входят в состав некоторых парасимпатических нервов. Также сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудодвигательный центр. Находится в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления.

Сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериаль­ного давления, а раздражение второго—расширение артерий и падение давления.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела.

Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полу­шарий.

Рефлекторная регуляция сосудистого тонуса. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходя­щих от периферических рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение.

Рефлекторные изменения тонуса артерий - сосудистые рефлексы - могут быть разделены на две группы: собственные и сопряжен­ные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Морфологическими исследованиями обнаружено большое число таких рецепторов. Особенно важное физиологическое значение имеют рецепторы, сосредото­ченные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж­ную. Рецепторы сосудистых рефлексогенных зон возбуждаются при изменении давления крови в сосудах. Поэтому их называют прессорецепторами, или барорецепторами. Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повыше­нии давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изменения артериального давления и других сосудистых областях.

Рефлекторная регуляция давления крови осуществляется при помощи не только механорецепторов, но и хеморецепторов, чувствительных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в аортальном и каротидном тельцах, т. е. в местах локализации прессорецепторов.

Хеморецепторы чувствительны к двуокиси кислорода и недостатку кислорода и крови; они раздражаются также окисью углерода, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигателыюму центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Одновременно происходит возбуждение дыхатель­ного центра.

Хеморецепторы обнаружены также в сосудах селезенки, надпочечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирую­щим в крови, например, к ацетилхолину, адреналину и др.

Сопряженные сосудистые рефлексы, т. е. рефлексы, возникающие в других системах и органах, проявляются преимущественно повышением артериального давления. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и артери­альное давление повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.

Влияние коры головного мозга на сосудистый тонус. Влияние коры полушарий большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры.

Кортикальные сосудистые реакции у человека изучены методом условных рефлек­сов. Если многократно сочетать какое-либо раздражение, например, согревание, охлаж­дение или болевое раздражение участка кожи с каким-нибудь индифферентным раздра­жителем (звуковым, световым и т. и.), то через некоторое число подобных сочетании один индифферентный раздражитель может вызвать такую же сосудистую реакцию, как и применяющееся одновременно с ним безусловное термическое или болевое раздраже­ние.

Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т.е. при участии коры больших полушарий. У человека при этом возникают и соответствующие ощущения (холода, тепла или боли), хотя никакого раздражения кожи не было.

3.2. Гуморальная регуляция тонуса сосудов. Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин, а также задней доли гипофиза – вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и капилляры.

К числу гуморальных сосудосуживающих факторов относится серотонин, продуцируемый в слизистой оболочке кишечника и некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Физиологическое значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного участка.

К сосудосуживающим веществам относится ацетилхолин, который образуется в окончаниях парасимпатических нервов и симпатических вазодилятаторов. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях чисто местное.

Сосудорасширяющим веществом является также гистамин – вещество, образующееся в стенке желудка и кишечника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.

 

 

Кровь

Постоянство химического состава и физико-химических свойств внутренней среды организма называется гомеостазом. Важнейшим компонентом внутренней среды организма является кровь — жидкая ткань организма. В систему крови входят: кровь, регулирующий нейрогуморальный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатиче­ские узлы, вилочковая железа, селезенка, печень).

Функции крови.

  • Транспортная
  • Дыхательная
  • Трофическая
  • Экскреторная
  • Терморегуляторная
  • Защитная
  • Регуляторная
  • Осуществление креаторных связей
  • Гомеостатическая

Константы крови

1. Количество крови, циркулирующей по сосудам. Общее ко­личество крови в организме составляет 4-6 л, из них в состоянии покоя циркулирует около половины, другая половина (45-50 %) на­ходится в депо (в печени до 20%, в селезенке до 16%, в кожных сосудах до 10%).

2. Соотношение объемов плазмы крови и форменных элемен­тов – гематокрит, составляет 45% форменных элементов и 55% плазмы. Эта величина у здорового человека может претерпевать существенные и достаточно длительные изменения лишь при адаптации к большим высотам. Плазма, лишенная фибриногена, называет­ся сывороткой.

3. Содержание форменных элементов, крови.

Гем содержит двухвалентное железо, которое играет ключевую роль в деятельно­сти гемоглобина. Гемоглобин синтезируется эритро- и нормобластами костного мозга. Для нормального синтеза гемоглобина необходимо достаточное по­ступление железа с пищей. При разрушении эритроцитов гемогло­бин, после отщепления гема, превращается в билирубин - желчный пигмент, который поступает, в основном, в кишечник в составе жел­чи, где превращается в стеркобилин, выводящийся из организма с каловыми массами. Часть билирубина удаляется из организма через почки в виде уробилина. Основная функция гемоглобина - перенос кислорода и частично углекислого газа. Соединение гемоглобина с кислородом – оксигемоглобин - происходит в капиллярах легких. Соединение гемогло­бина с углекислым газом – карбоксигемоглобин - происходит в капил­лярах тканей организма. В виде карбоксигемоглобина транспортируется 20% углекислого газа.

5. Скорость оседания эритроцитов (СОЭ): у мужчин—2-1 мм/ч, у женщин —2-15 мм/ч. Скорость оседания эритроцитов зависит от многих факторов: количества эритроцитов, их морфологических особенностей, величины заряда, способности к агрегации, белкового состава плазмы. На скорость оседания эритроцитов влияет физиологическое состояние организма.

6. Вязкость крови обусловлена наличием белков и эрит­роцитов. Вязкость цельной крови равна 5,0, плазмы - 1,7-2,2.

7. Удельный вес (относительная плотность) крови зависит от со­держания форменных элементов, белков и липидов. Удельный вес цельной крови равен 1,050-1,060, плазмы - 1,025-1,034.

1.Постоянство ионного состава крови.

2.Количество белков в плазме.

3.Осмотическое давление крови равно 7,6 атм., зависит от содержания солей и воды в плазме крови и обеспечивает поддержание на физиологически необходимом уровне концентрации различных веществ, растворенных в жидких средах организма. Часть осмотического давления, создаваемая белками плазмы, составляет онкотическое давление, величина которо­го равна 0,03-0,04 атм или 25-30 мм рт. ст. Онкотическое давление является фактором, способствующим переходу воды из тканей в кровяное русло. При снижении величины онкотического давления крови происходит выход воды из сосудов в интерстициальное пространст­во, что приводит к отеку тканей.

4.Содержание-глюкозы. В нормальных условиях оно равно 3,3- 5,5 ммоль/л.

5.Содержание кислорода и углекислого газа в крови.

6.Кислотно-основное равновесие крови. рН артериальной крови 7,4, венозной - 7,35.

Свертывание крови

Одним из проявлений защитной функции крови является ее способность к свертыванию. Гемокоагуляция является защитным механизмом организма, направленным на сохране­ние крови в сосудистой системе.

В гемостатической реакции принимают участие: ткань, окружающая сосуд; стенка сосуда; плазменные факторы свертывания крови; все клетки крови, но особенно тромбоциты. Важная роль в свертывании крови принадлежит физиологически активным веществам, которые можно разделить на три группы:

• способствующие свертыванию крови;

• препятствующие свертыванию крови;

• способствующие рассасыванию образовавшегося тромба.

Все эти вещества содержатся в плазме и форменных элементах, а также в тканях организма и, особенно, в сосудистой стенке. Процесс свертывания крови протекает в 5 фаз, из которых 3 являются основными, а 2 - дополнительными. В процессе свертывания крови принимают участие много факторов, из них 13 находятся в плазме крови и называются плазменными факторами. Они обозначаются римскими цифрами (1- XIII). Другие 12 факторов находятся в форменных элементах крови (особенно, тромбоцитах, поэтому их называют тромбоцитарными) и в тканях. Их обозначают арабскими цифрами (1-12). Величина повреждения сосуда и степень участия отдельных факторов определяют два основных механизма гемостаза сосудисто-тромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный механизм обеспечивает гомеостаз в наиболее часто травмируемых мелких сосудах (микроциркуляторных) с низким артериальным давлением. Он состоит из ряда последовательных этапов.

1. Кратковременный спазм поврежденных сосудов, возникаю­щий под влиянием сосудосуживающих веществ, высвобождающихся из тромбоцитов (адреналин, норадреналин, серотонин).

2. Адгезия (прилипание) тромбоцитов к раневой поверхности происходящая в результате изменения в месте повреждения отрицательного электрического заряда внутренней стенки сосуда на положительный. Тромбоциты, несущие на своей поверхности отрицательный заряд, прилипают к травмированному участку. Адгезия тромбоцитов завершается за 3-10 секунд.

3. Обратимая, агрегация (окучивание) тромбоцитов у места повреждения. Она начинается почти одновременно с адгезией и обусловлена выделением поврежденной стенкой сосуда, из тромбоцитов и эритроцитов биологически активных веществ (АТФ, АДФ). В результате образуется рыхлая тромбоцитарная пробка, через которую проходит плазма крови.

4. Необратимая агрегация тромбоцитов, при которой тромбоциты теряют свою структурность и сливаются в гомогенную массу образуя пробку, непроницаемую для плазмы крови. Выделение факторов свертывания крови способствует вторичному спазму сосудов. Освобождение фактора 3 дает начало образованию тромбоцитарной протромбиназы, т.е. включению механизма коагуляционного гемостаза. В агрегатах тромбоцитов образуется небольшое количество нитей фибрина, в сетях которого задерживаются форменные элемент) крови.

5. Ретракция тромбоцитарного тромба, т.е. уплотнение закрепление тромбоцитарной пробки в поврежденном сосуде за счёт фибриновых нитей и ретракции кровяного сгустка. В мелких сосудах гемостаз на этом заканчивается. В крупных сосудах на основе тромбоцитарного тромба образуется более прочный фибриновый тромб для формирования которого включается ферментативный коагуляционный механизм гемостаза. Этот механизм имеет место при травме крупных сосудов.

Первая фаза. Самой сложной и продолжительной фазой является формирование протромбиназы. формируются тканевая и кровяная протромбиназы. В формировании тканевой протромбиназы участвуют плазменные факторы IV, V, VII, X. Эта фаза длится 5-10с.

Кровяная протромбиназа образуется медленнее. Начальной реакцией является активация XII фактора, которая осуществляется при его контакте с обнажающимися при повреждении сосуда волокнами коллагена. Затем фактор XII с помощью активированного им калликреина и кинина активирует фактор XI, образуя с ним комплекс. На фосфолипидах разрушенных тромбоцитов и эритроцитов завершает­ся образование комплекса фактор XII + фактор XI. В дальнейшем реакции образования кровяной протромбиназы протекают на матри­це фосфолипидов. Под влиянием фактора XI активируется фактор IX, который реагирует с фактором IV (ионы кальция) и VIII, образуя кальциевый комплекс. Он адсорбируется на фосфолипидах и затем активирует фактор X. Этот фактор на фосфолипидах образует комплекс фактор Х + фактор V + фактор IV и завершает образо­вание кровяной протромбиназы. Образование кровяной протромби­назы длится 5-10 минут.

Вторая фаза. Образование протромбиназы знаменует начало второй фазы свертывания крови - образование тромбина из протромбина. Протромбиназа адсорбирует протромбин и на своей поверхно­сти превращает его в тромбин. Этот процесс протекает с участием факторов IV, V, X, а также факторов 1 и 2 тромбоцитов. Вторая фаза длится 2-5 с.

Третья фаза. В третьей фазе происходит образование (превра­щение) нерасворимого фибрина из фибриногена. Эта фаза проте­кает в три этапа. На первом этапе под влиянием тромбина происхо­дит отщепление пептидов, что приводит к образованию желеобразного фибрин-мономера. Затем с участием ионов кальция из него образуется растворимый фибрин-полимер. На третьем этапе при участии фактора XIII и фибриназы тканей, тромбоцитов и эритро­цитов происходит образование окончательного (нерастворимого) фибрина-полимера. Фибриназа при этом образует прочные пептидные связи между соседними молекулами фибрина-полимера, что в целом увеличивает его прочность и устойчивость к фибринолизу. В этой фибриновой сети задерживаются форменные элементы крови, формируется кровяной сгусток (тромб). Спустя некоторое время после образования сгустка тромб начи­нает уплотняться, и из него выдавливается сыворотка. Этот процесс называется ретракцией сгустка. Он протекает при участии сокра­тительного белка тромбоцитов (тромбостенина) и ионов кальция. В результате ретракции тромб плотнее закрывает поврежденный сосуд и сближает края раны. Одновременно с ретракцией сгустка начинается постепенное ферментативное растворение образовавшегося фибрина - фибринолиз, в результате которого восстанавливается просвет закупоренно­го сгустком сосуда. Расщепление фибрина происходит под влияни­ем плазмина (фибринолизина), который находится в плазме крови в виде профермента плазминогена, активирование которого происходит под влиянием активаторов плазминогена плазмы и тканей.

Date: 2016-11-17; view: 463; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию