![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Электрический ток в вакууме. Термоэлектронная эмиссия
Возможность управлять движением заряженных частиц в вакууме с помощью внешних электрических и магнитных полей служит основой для работы электронно-лучевых трубок и других электровакуумных приборов. Вакуумом называют разряженный газ, концентрация молекул в котором так мала, что они не сталкиваются друг с другом. Поэтому вакуум является идеальным изолятором. Однако, если внести в вакуум свободные заряженные частицы, например, электроны, то он становится проводником тока. При этом движением свободных зарядов в вакууме легко управлять, т.к. они не сталкиваются с молекулами разряженного газа. Приборы, в которых электрический ток проходит через вакуум, называют электровакуумными. Источником заряженных частиц для вакуума может быть поверхность металла, нагретого до высоких температур (1500-2500 оС). При таких температурах часть свободных электронов металла обладает энергией, достаточной для того, чтобы разорвать все имеющиеся связи и покинуть поверхность металла. Это явление, напоминающее испарение молекул с поверхности жидкости, называют термоэлектронной эмиссий. Простейшим электровакуумным прибором является вакуумный диод - устройство, пропускающее ток только в одном направлении. Так как электроны в вакууме не испытывают никаких столкновений, их скорость в электровакуумных приборах может достигать очень больших значений. Легко посчитать, что в вакуумном диоде, между анодом и катодом которого приложено напряжение 100 В, электроны разгоняются до 6.106 м/с, что в миллиарды раз больше, чем скорость их упорядоченного движения в металлах. При торможении электронов их кинетическая энергия может переходить в энергию излучения (например, рентгеновского), тепловую и другие формы энергии.
Date: 2016-08-31; view: 454; Нарушение авторских прав |