Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Примеры решения задач
Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.
Решение 1. Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных напряжений. Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил. 2. Определяем величины нормальных напряжений по сечениям с учетом изменений площади поперечного сечения. Строим эпюру нормальных напряжений. 3. На каждом участке определяем абсолютное удлинение. Результаты алгебраически суммируем. Примечание. Балка защемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца (справа).
1. Два участка нагружения: участок 1:
растянут; участок 2: 2. Три участка по напряжениям:
Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормальных напряжений по его длине, а также определить перемещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/'мм3. Решение
1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б. 2. Вычислим напряжения в поперечных сечениях каждого участка: для первого для второго для третьего для четвертого для пятого Эпюра нормальных напряжений построена на рис. 2.9, в. 3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса определяется как алгебраическая сумма удлинений (укорочений) всех его участков: Подставляя числовые значения, получаем 4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (укорочений) участков ///, IV, V: Подставляя значения из предыдущего расчета, получаем Таким образом, свободный правый конец бруса перемещается вправо, а сечение, где приложена сила Р2, — влево. 5. Вычисленные выше значения перемещений можно получить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя результаты. Рекомендуем учащемуся проделать это самостоятельно.
Пример 3. Определить, какое напряжение возникает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l 1 = 200,2 мм. Е = 2,1*106 Н/мм2. Решение
Абсолютное удлинение стержня Продольная деформация стержня Согласно закону Гука
Пример 4. Стенной кронштейн (рис. 2.10, а) состоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F 1 = 1 см2, площадь сечения подкоса F2 = 25 см2. Определить горизонтальное и вертикальное перемещения точки В, если в ней подвешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*105 Н/мм2, дерева Ед = 1,0*104 Н/мм2. Решение
1. Для определения продольных усилий в стержнях АВ и ВС вырезаем узел В. Предполагая, что стержни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия: откуда
Усилие N2 получилось со знаком минус. Это указывает на то, что первоначальное предположение о направлении усилия неверно — фактически этот стержень сжат. 2. Вычислим удлинение стальной тяги Δl1 и укорочение подкоса Δl2:
где Тяга АВ удлиняется на Δl1 = 2,2 мм; подкос ВС укорачивается на Δl1 = 7,4 мм. 3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если деформированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В' и В2В', соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В') дает новое положение точки (шарнира) В. 4. На рис. 2.10, г диаграмма перемещений точки В изображена в более крупном масштабе. 5. Горизонтальное перемещение точки В
Вертикальное где составляющие отрезки определяются из рис. 2.10, г; Подставляя числовые значения, окончательно получаем При вычислении перемещений в формулы подставляются абсолютные значения удлинений (укорочений) стержней.
Контрольные вопросы и задания
1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.) 2. Что характеризует коэффициент поперечной деформации? 3. Сформулируйте закон Гука в современной форме при растяжении и сжатии. 4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости? 5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется? 6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами? 7. Ответьте на вопросы тестового задания. Date: 2016-05-25; view: 2539; Нарушение авторских прав |