Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Устройство двойных мостов постоянного тока
Плечами двойного (шестиплечего) измерительного моста служат измеряемое сопротивление Rx (выполняют четырехзажимным для уменьшения влияния переходных контактных сопротивлений и включают в сеть через специальное четырехзажимное приспособление), образцовый резистор Ro и две пары вспомогательных резисторов Rl, R2, R3, R4. Рис. 3 Схема двойного измерительного моста постоянного тока Равновесие моста определяется формулой: Rх = Ro х (R1/R2) - (r R3 / (r +R3 +R4)) х (R1/R2 - R4/R3) Отсюда видно, что если два отношения плеч R1/R2 и R4/R3 равны между собой, то вычитаемое равно нулю. Несмотря на то, что сопротивления R1 и R4, перемещая движок D, устанавливают одинаковыми, из-за разброса параметров сопротивлений R2 и R4 этого добиться очень сложно. Для уменьшения ошибки измерений надо сопротивление перемычки, соединяющей образцовый резистор Ro и измеряемое сопротивление Rx, брать как можно меньшим. Обычно к прибору придается специальный калиброванный резистор r. Тогда вычитаемое выражения практически становится равным нулю. Значение измеряемого сопротивления можно определить по формуле: Rх = Ro R1/R2 Двойные измерительные мосты постоянного тока рассчитаны на работу только с переменным отношением плеч. Чувствительность двойного моста зависит от чувствительности нулевого указателя, параметров мостовой схемы и значения рабочего тока. С увеличением рабочего тока чувствительность увеличивается.
Стандартная мостовая схема, часто называемая мостом Уитстона (Wheatstone bridge), изображена на рисунке 1. Рис. 1. Когда напряжение между точкой 1 и минусом батареи равно напряжению между точкой 2 и отрицательным выводом батареи, то индикатор баланса будет показывать ноль, и про такой мост говорят что он "сбалансирован". Состояние баланса моста полностью зависит от отношений Ra/Rb и R1/R2, и оно не зависит от напряжения питания. Для измерения сопротивлений с помощью моста Уитстона на место резисторов Ra или Rbустанавливается неизвестное сопротивление, в то время как остальные три резистора являются прецизионными и их номинал известен. Каждый из этих трёх резисторов может быть заменён сопротивлением другой величины или их номиналы могут быть скорректированы, что бы мост сбалансировался, и когда это произойдёт то величина сопротивления неизвестного резистора может быть определена из соотношения величин известных сопротивлений. Для этого необходимо, что бы измерительная система имела набор переменных резисторов с точно известными значениями, которые могут служить эталонными стандартами. Например, если мост настроен на измерение сопротивления Rx (рисунок 2), то мы должны знать точное значение остальных трёх сопротивлений при сбалансированном мосте, что бы определить величину сопротивления Rx: Рис. 2. Каждое из четырёх сопротивлений в мостовой схеме называют плечом. Резистор, последовательно соединённый с неизвестным сопротивлением, Rxобычно называют реостатом моста (это будет сопротивление Ra на рисунке 2), а другие два сопротивления называют плечами отношений моста. Точные и стабильные образцовые сопротивления к счастью, не сложно изготовить. В действительности они были одними из первых электрических "Стандартных" устройств, изготовленных в научных целях. На рисунке 3 приведена фотография старинного блока стандартных сопротивлений: Рис. 3. Магазин образцовых сопротивлений Стандарт сопротивлений, изображённый на рисунке 3, является переменным с дискретным шагом изменения сопротивления: величина сопротивления между клеммами может изменяться в зависимости от количества и положения медных вставок, вставленных в разъёмы. Мосты Уитстона считаются превосходным средством измерения сопротивления среди схем различных омметров. Но в отличие от всех этих схем, являющихся нелинейными (и имеющих нелинейные шкалы), и связанные с этим погрешности измерений, мостовая схема является линейной (математика описания её работы основана на простых отношениях и пропорциях) и довольно точной. Имея стандартные сопротивления достаточной точности и нуль-детектор с необходимой чувствительностью, достижимая точность измерения сопротивления может быть не хуже +-0,05% при использовании моста Уитстона. Это метод измерения сопротивления предпочитают использовать в калибровочных лабораториях из-за его высокой точности. Существует много вариаций основной схемы моста Уитстона. Большинство мостов постоянного тока используются для измерения сопротивления, в то время как мосты переменного тока могут быть использованы для измерения различных электрических величин, таких как индуктивность, ёмкость и частота. Интересным вариантом моста Уитстона является двойной мост Кельвина, используемый для измерения очень малых сопротивлений (обычно менее 1/10 Ома), его схема изображена на рисунке 4: Рис. 4. Двойной мост Кельвина. Низкоомные резисторы на рисунке изображены толстой линией, так же как и проводники, соединяющие их с источником напряжения, обеспечивающим сильный ток. Принцип работы этого измерительного моста причудливой конфигурации, пожалуй, лучше всего понять, если начать объяснение принципа его работы со стандартного моста Уитстона, настроенного для измерения низкого сопротивления, этот мост развивался шаг за шагом до его нынешнего состояния в попытке преодолеть некоторые проблемы, возникшие в мосте Уитстона стандартной конфигурации. Если бы мы использовали стандартный мост Уитстона для измерения небольших сопротивлений, то его схема бы выглядела примерно так (рисунок 5): Рис. 5. Когда нуль-детектор указывает нулевое напряжение, мы знаем, что мост сбалансирован и что соотношение Ra/Rx и RM/RN математически равны друг другу. Зная значения Ra, RM, and RN поэтому мы имеем все необходимые данные, чтобы найти величину Rx. Почти. Имеется проблема в том, что соединения и соединительные провода между Ra и Rx обладают неким сопротивлением, и эти паразитные сопротивления могут быть существенными по сравнению с низким сопротивлением Ra и Rx. Эти паразитные сопротивления понизят реальное напряжение, учитывая большой ток, протекающий через них, и таким образом будут влиять на показания детектора нуля и на баланс моста (Рисунок 6): Рис. 6. Так как мы не хотим измерять сопротивление этих паразитных проводников и сопротивление соединений, а нас интересует только измерение сопротивления Rx, то надо найти такой способ включения нуль-детектора, что бы на его показания не влияли падения напряжений, протекающего через эти сопротивления. Если мы присоединим нуль-детектор и плечи отношений RM/RN напрямую к выводам Ra и Rx, то это приведёт нас к такой реализации измерительного моста (Рисунок 7): Рис. 7. Теперь два крайних падения напряжения Eпров. не оказывают воздействия на нуль-детектор и не влияют на точность измерений сопротивления Rx. Но два оставшихся падения напряжений Eпров. являются проблемой, так как проводник, соединяющий нижний по схеме вывод Ra и верхний по схеме вывод Rxтеперь шунтирует оба падения напряжения и по нему будет течь существенный ток, который создаст на этом проводнике своё падение напряжения. Зная, что левая часть нуль-детектора должна быть подключена к двум крайним выводам сопротивлений Ra и Rx, что бы не вносить ошибки, связанные с паразитными падениями напряжения Eпров. в цепи нуль-детектора, и что любой прямой провод, соединяющий выводы этих сопротивлений Ra и Rx будет сам нести значительный ток и создавать ещё большее паразитное падение напряжения, то единственным способом преодолеть эту проблему является создание соединения, имеющее существенное сопротивление, между нижнем по схеме выводом Ra и верхнем по схеме выводом Rx (Рисунок 8): Рис. 8. Справится с паразитными падениями напряжений между выводами сопротивлений Ra Rx можно путём изменения сопротивления двух новых резисторов таким образом, что бы отношение их величин было бы таким же, как и отношение величин сопротивлений в плече отношений, находящихся по схеме с правой стороны от нуль-детектора. Вот почему эти резисторы были помечены Rm и Rn в оригинальной схеме двойного моста Кельвина: для обозначения их соразмерности с сопротивлениями RM и RN (Рисунок 9): Рис. 9. Двойной мост Кельвина При отношении Rm/Rn равном отношению RM/RN, резистор в плече реостата Ra регулируется до тех пор, пока нуль-индикатор не покажет, что мост сбалансирован, и тогда можно будет сказать, что отношение Ra/Rx равно отношению RM/RN, или просто найти Rx из следующего уравнения: Полное уравнение баланса двойного моста Кельвина выглядит следующим образом (Rпров. - это сопротивление толстых соединительных проводов между низкоомным образцовым сопротивлением Ra и испытуемым сопротивлением Rx): До тех пор пока соотношение между RM и RN равно отношению между Rm и Rn, уравнение баланса будет не сложнее чем у обычного моста Уитстона, при Rx/Ra равном RN/RM, так как последнее выражение в уравнении будет равно нулю, так что будет отсутствовать влияние всех сопротивлений, кроме Rx, Ra, RM, и RN. Во многих двойных мостовых схемах Кельвина RM=Rm и RN=Rn. Однако чем меньше значения сопротивлений Rm и Rn, тем более чувствительным должен быть нуль-детектор, потому что там будет меньше последовательное сопротивление. Увеличение чувствительности детектора является полезным, так как оно позволит обнаруживать слабые дисбалансы, и таким образом мост можно будет сбалансировать с большой точностью. Таким образом некоторые высокоточные двойные мосты Кельвина используют сопротивления Rm и Rn со значениями в 100 раз меньше, чем значения сопротивлений RM и RN в другом плече. К сожалению, однако, чем ниже значения сопротивлений Rm и Rn, тем больший ток по ним будет течь, что увеличит влияние любого сопротивления в точке подключения Rm и Rn к Ra и Rx. Как вы можете видеть, высокая точность инструмента требует, чтобы учитывались все ошибки различных факторов, и часто лучшее, что может быть достигнуто является компромиссом минимизации двух или более различных видов ошибок.
УРОК №17 Методы контурных токов и узловых потенциалов: составление исходных уравнений. Примеры применения методов. Date: 2016-05-25; view: 2979; Нарушение авторских прав |