Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Нормальное преобразование и его свойства
Преобразование называется нормальным, если оно перестановочно с сопряженным преобразованием, то есть Свойство 8.4. Если x собственный вектор нормального преобразования Доказательство. Пусть Свойство 8.5. Собственные векторы нормального преобразования, соответствующие разным собственным значениям ортогональны. Доказательство. Пусть x и y – собственные векторы нормального преобразования Теорема 8.1. Для нормального преобразования конечномерного унитарного пространства существует ортонормированный базис из собственных векторов. Доказательство. Путь Построение ортонормированного базиса из собственных векторов, в котором матрица нормального преобразования диагонализируема, можно осуществлять следующим образом. Найти какой ни будь базис из собственных векторов. При этом, собственные векторы, соответствующие разным собственным числам заведомо ортогональны (Свойство 8.5). Условие ортогональности может нарушаться только на собственных векторах, соответствующих одному и тому же собственному значению. Если матрица линейного преобразования диагонализируема, то всегда можно ввести скалярное произведение таким образом, чтобы линейное преобразование стало нормальным. Теорема 8.2. Для нормального преобразования конечномерного евклидова пространства существует ортонормированный базис, в котором матрица линейного преобразования имеет блочно-диагональный вид. По главной диагонали расположены блоки первого и второго порядка. Доказательство. Путь К сожалению, приведенное доказательство не раскрывает структуру блоков второго порядка, расположенных на главной диагонали. Поэтому дадим другое доказательство этой теоремы. Доказательство 2. Множество Если матрица линейного преобразования диагонализируема, то всегда можно ввести скалярное произведение таким образом, чтобы линейное преобразование стало нормальным. Date: 2016-06-08; view: 457; Нарушение авторских прав |