Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Средние величины, методика их вычисления и оценка достоверности
В медико-социальных исследованиях наряду с абсолютными и относительными широко используются средние величины. Средняя величина – это совокупная обобщающая характеристика количественных признаков, она обычно обозначается буквой М или Х. Средние величины существенно отличаются от статистических коэффициентов: 1. Коэффициенты характеризуют признак, встречающийся только у некоторой части статистического коллектива, так называемый альтернативный признак, который может иметь место или не иметь место (рождение, смерть, заболевание, инвалидность). Средние величины охватывают признаки, присущие всем членам коллектива, но в разной степени (вес, рост, дни лечения в больнице). 2. Коэффициенты применяются для измерения качественных признаков. Средние величины — для варьирующих количественных признаков. Применение средних величин в медико-социальных исследованиях широко используется при изучении физического развития. Кроме того, средние величины применяются: 1. Для характеристики организации работы лечебно-профилактических учреждений и оценки их деятельности: а) в поликлинике: показатели нагрузки врачей, посещаемость поликлиники, среднее число посещений на 1-м году жизни, среднее число детей на участке, среднее число посещений при определенном заболевании и т. д.; б) в стационаре: среднее число дней работы койки в году; средняя длительность лечения при определенных заболеваниях и т. д.; в) в органах санэпиднадзора: средняя площадь (или кубатура) на 1 человека, средние нормы питания (белки, жиры, углеводы, витамины, минеральные соли, калории) в дневном рационе возрастных групп у детей и взрослых и т. д. 2. Для определения медико-физиологических показателей организма в норме и патологии в клинических и экспериментальных исследованиях. 3. В специальных демографических и медико-социальных исследованиях. Для расчета средней величины необходимо построить вариационный ряд — т. е. ряд числовых измерений определенного признака, отличающихся по своей величине. Вариационные ряды бывают следующих видов: а) ранжированный, неранжированный; б) сгруппированный, несгруппированный; в) прерывный, непрерывный. Ранжированный ряд — упорядоченный ряд; варианты располагаются последовательно по нарастанию или убыванию числовых значений. Неранжированный ряд — варианты располагаются бессистемно. Прерывный (дискретный) ряд — варианты выражены в виде целых (дискретных) чисел (окна в избе). Непрерывный ряд – варианты могут быть выражены дробными числами. Несгруппированный ряд – каждому значению варианты соответствует определенное число частот. Сгруппированный ряд (интервальный) – варианты соединены в группы, объединяющие их по величине в пределах определенного интервала. В статистике принято выделять следующие виды средних величин: мода (Мо), медиана (Ме) и средняя арифметическая (М). Мода – величина варьирующего признака, наиболее часто встречающаяся в совокупности. В вариационном ряду это варианта, имеющая наибольшую частоту встречаемости. Обычно мода является величиной довольно близкой к средней арифметической, совпадает с ней при полной симметрии распределения. Медиана – варианта, делящая вариационный ряд на две равные половины. При нечетном числе наблюдений медианой является варианта, имеющая в вариационном ряду порядковый номер (n + 1): 2. Средняя арифметическая величина (М) – в отличие от моды и медианы опирается на все произведенные наблюдения, поэтому является важной характеристикой для всего распределения. В зависимости от вида вариационного ряда используется тот или иной способ расчета средней. Средняя арифметическая для простого ряда, где каждая варианта встречается один раз, вычисляется по формуле: М = Среднеквадратическое отклонение (
Степень разнообразия (колеблемости) признака в вариационном ряду можно оценить по коэффициенту вариации (отношение среднего квадратического отклонения к средней величине, умноженное на 100%); при вариации менее 10% отмечается слабое разнообразие, при вариации 10—20% — среднее, а при вариации более 20% — сильное разнообразие признака. Если нет возможности сравнить вариационный ряд с другими, то используют правило трех сигм. Если к средней прибавить одну сигму, то этой вычисленной средней соответствует 68,3%, при двух сигмах — 95,4%, при трех сигмах — 99,7% от всех признаков. В медицине с величиной М ± 1σ связано понятие нормы; отклонения от средней (в любую сторону) больше, чем на 1σ, но меньше чем на 2σ, считаются субнормальными (выше или ниже нормы), а при отклонении от средней больше чем на 2σ, варианты считаются значительно отличающимися от нормы (патология). Мерой точности и достоверности результатов выборочных статистических величин являются средние ошибки представительности (репрезентативности). Средняя ошибка средней арифметической – m (отношение среднего квадратического отклонения к квадратному корню из общего числа наблюдений — объектов). m = Мерой достоверности среднего показателя наряду с его ошибкой являются, доверительные границы и достоверность разности между двумя средними величинами.
Date: 2016-02-19; view: 776; Нарушение авторских прав |