Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Производство винилхлорида из этилена сбалансированным по хлору способом
Процесс получения винилхлорида сбалансированным методом из этилена состоит из шести стадий: 1. синтез 1,2-дихлорэтана прямым жидкофазным хлорированием этилена, 2. синтез 1,2-дихлорэтана окислительным каталитическим хлорированием этилена, 3. промывка, осушка, ректификация 1,2-дихлорэтана, 4. термическое обьемное дегидрохлорирование 1,2-дихлорэтана, 5. разделение продуктов дегидрохлорирования 1,2-дихлорэтана, 6. ректификация винилхлорида.
2.1. Теоретические основы процесса
Сбалансированный по хлору способ получения винилхлорида из этилена базируется на трех основных реакциях:
Следовательно, он является комбинацией трех процессов: прямого аддитивного хлорирования этилена в 1,2 –дихлорэтан, термического дегидрохлорирования 1,2- дихлорэтана в винилхлорид и окислительного хлорирования этилена в 1,2 –дихлорэтан с помощью хлороводорода, образовавшегося при дегидрохлориировании.[6] Оксихлорирование протекает с выделением значительного количества тепла, тогда как пиролиз протекает с поглощением значительного количества тепла, а HCl, получаемый при пиролизе, используется в процессе оксихлорирования. Следовательно, необходимо подобрать условия для проведения этих реакций в одном аппарате, что позволит приблизить процесс к адиабатическому и обеспечит протекание процесса пиролиза, т.е. реализовать совмещенно- комбинированный процесс получения 1,2-дихлорэтана и винилхлорида. Этот процесс требует больших затрат энергии. К тому же он имеет низкую селективность. Зависимость изменения энергии Гиббса этой реакции дегидрохлорирования представлена на рис.1 как видно из рис. 1, изменение знака энергии происходит для этой реакции при =500 К, а выше этой температуры преимущественно протекает отщепление НС1. Реакция 2 протекает медленно по молекулярному механизму.
Рис. 1. Зависимость изменения энергии Гиббса от температуры для реакции дегидрохлорирования 1,1 -дихлорэтана
Интерес к термическому дегидрохлорированию был вызван возможностью замены прежнего метода отщепления НС1 под действием щелочи. Этот способ используется также для получения винилиденхлорида и других продуктов. Но в этом процессе образуется много сточных вод (щелочных), а также отходов соли (он требует большого расхода щелочи). Термическое дегидрохлорирование позволило устранить эти недостатки: реакция протекает при температуре 500°С только под воздействием температуры или в присутствии небольшого количества хлора (в качестве инициатора) и гетерогенных контактов. Поскольку процесс эндотермический, его, как правило, осуществляют в трубчатых реакторах, обогреваемых топочными газами. Такой способ производства винилхлорида оказался более экономичным (на 30 %) по сравнению с щелочным дегидрохлорированием 1,2-дихлорэтана и на 14 % — по сравнению с гидрохлорированием ацетилена. В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в отсутствие НС1. При этом и себестоимость получаемого мономера снижается на 25—30 % по сравнению с методом, основанным на гидрохлорировании ацетилена. В этом совмещенном процессе из этилена, хлора и кислорода получается винилхлорид в присутствии HCl. При этом и себестоимость получаемого мономера снижается на 25-30% по сравнению с методом, основанным на гидрохлорировании ацетилена.
2.2.Технологическое оформление процесса получения винилхлорида сбалансированным по хлору методом Технологическое оформление процесса получения винилхлорида по комбинированному методу представлена на рис.
Первой стадией этого комбинированного процесса является прямое хлорирование этилена до 1,2-дихлорэтана, которая осуществляется в колонном аппарате 1. Хлор и этилен подаются в нижнюю часть хлоратора через соответствующие барботеры. Хлоратор до определенного уровня заполняют катализаторным раствором(FeCl3 в 1,2-дихлорэтане). Теплота реакции в нем отводится за счет испарения 1,2-дихлорэтана. Пары 1,2-дихлорэтана конденсируются в холодильнике-конденсаторе 2 и конденсат собирается в сборнике 3. Далее часть конденсата в виде рецикла возвращается в хлоратор 1 для отвода тепла и поддержания определенного уровня. В данном случае наблюдается типичный жидкофазный процесс, в котором теплота реакции отводится за счет испарения продукта. Но это тепло не используется. Более того, образуется большое количество нагретой воды. Следовательно, необходимо вводить систему использования теплоты реакции. Остальная часть конденсата направляется на ректификацию в колонну 16. Кроме того, в сборнике 3 отделяются растворенные газы, которые во избежание потерь 1,2-дихлорэтана дополнительно охлаждают рассолом в холодильнике 2, а затем очищают и выводят из системы. Процесс оксихлорирования осуществляется в реакторе 5 под давлением 0,5 МПа и при температуре 200—280°С. Катализатор в нем находится в псевдоожиженном слое. Чистый этилен, рециркулирующий газ, воздух и хлорид водорода смешиваются предварительно в смесителе 4. Способ смешения и соотношение компонентов должны быть таковыми, чтобы не образовывались взрывоопасные смеси. В реакторе 5 тепло отводится за счет встроенного змеевика, в котором испаряется водный конденсат. В результате образуется технический пар, который используется в этом же производстве, например при ректификации. Полученная реакционная парогазовая смесь, содержащая непрореагировавшие этилен, кислород, хлорид водорода, 1,2-дихлорэтан и инертные газы, поступает в нижнюю часть холодильника- смешения 7. Последний орошается водной смесью 1,2-дихлорэтана, циркулирующей через теплообменник 8насосом 9. Часть раствора хлороводородной кислоты непрерывно отводится из системы. Естественно, эта кислота загрязнена 1,2-дихлорэтаном и поэтому может быть использована при его производстве или должна быть очищена от него для последующего использования. Охлажденную парогазовую смесь направляют в скруббер 10 для нейтрализации оставшегося НС1. Скруббер орошается раствором NaOH, который подается насосом 9. Часть щелочного раствора непрерывно выводится из системы (этот раствор содержит щелочь, соль и растворенный 1,2-дихлорэтан). Поэтому необходимо разработать способы очистки и утилизации всех продуктов из этого раствора. В скруббере 10 парогазовая смесь очищается от НС1 и С02 и окончательно охлаждается в холодильнике-конденсаторе 2. Конденсат отделяется от газов в сепараторе 11 поступает во флорентийский сосуд 12, в котором более тяжелый 1,2-дихлорэтан отделяется от воды. Эта вода используется для разбавления щелочи. Циркулирующий газ (смесь этилена, кислорода и инертных веществ) компрессором 13возвращается в смеситель 4. Чтобы избежать накопления инертов в системе, часть газа выводится из системы для очистки от унесенного 1,2-дихлорэтана. Так как 1,2-дихлорэтан, выходящий из флорентийского сосуда 12, содержит воду(по растворимости), то он направляется в колонну 14 для гетеро- азеотропной осушки. Верхний водный слой флорентийского сосуда также может быть использован для приготовления щелочи или должен быть очищен от 1,2-дихлорэтана гетероазеотропной ректификацией. При этом 1,2-дихлорэтан будет отделен от воды в виде гетероазеотропа. Таким образом, в ректификационную колонну 16 направляют 1,2-дихлорэтан, полученный как хлорированием, так и оксихлорированием этилена. В этой колонне 1,2-дихлорэтан отделяется от высших хлоридов, которые могут применяться в качестве растворителя. Очищенный же 1,2-дихлорэтан может использоваться в качестве полупродукта при производстве винилхлорида. В этом случае он собирается в емкости 17, а из нее компрессором 13направляется в печь 18, в которой при давлении 1,5—2,0 МПа и температуре 500 °С он пиролизуется до винилхлорида и НС1.[7] После пиролиза реакционная парогазовая смесь проходит холодильник-смешения 19. Этот холодильник орошается захоложенным в холодильнике 8 1,2-дихлорэтаном. Парогазовая смесь далее охлаждается в холодильнике-конденсаторе 2 и направляется в ректификационную колонну 20. Эта колонна, работающая под давлением, предназначена для отделения НС1. При этом давлении НС1 конденсируется и может возвращаться в виде флегмы, а несконденсированные газы после сепаратора (главным образом НС1) воз вращаются в смеситель 4 для проведения оксихлорирования. Кубовый продукт колонны 20(главным образом винилхлорид и 1,2-дихлорэтан) направляется в ректификационную колонну 21через дроссельный вентиль 6. В этой колонне в качестве дистиллята выделяется мономерный винилхлорид (99,9 %-ной чистоты). Кубовый продукт, главным образом 1,2-дихлорэтан, возвращается в колонну 16.
2.3. Принципы в технологии получения винилхлорида сбалансированным по хлору методом Технология получения винилхлорида сбалансированным по хлору методом (комбинация хлорирования и оксихлорирования этилена с термическим дегидрохлорированием 1,2-дихлорэтана) выступает одним из наиболее интересных примеров реализации принципов создания технологий 00 и НХС. Технология является непрерывной. По химической составляющей ее, несмотря на наличие трех отдельных реакторных подсистем, можно отнести к двух- стадийной. Это вызвано тем, что каждая из цепей химических превращений, ведущих к винилхлориду, состоит из двух стадий: оксихлорирование + термический пиролиз и хлорирование + термический пиролиз. Эти два параллельных процесса связаны, во-первых, рециркуляционнымпотоком по хлороводороду, что позволяет почти полностью его утилизировать, а во-вторых, общей стадией термического пиролиза, использующей как дихлорэтан оксихлорирования, так и дихлорэтан хлорирования этилена. Суммарные потери хлора составляют всего 11—12 кг, а этилена 23—36 кг на тонну товарного винилхлорида. Большая доля потерь этилена связана с процессом его полного окисления на стадии оксихлорирования (около 19 кг на тонну винилхлорида), а хлора на стадии очистки сточных вод и оксихлорирования (4—6 и 3,4—3,7 кг на тонну винилхлорида соответственно). Таким образом, комбинирование двух процессов в одной технологии позволяет с использованием рециркуляции по образующемуся хлороводороду свести потери сырья к минимуму и одновременно обеспечить эффективную защиту окружающей среды от хлора и хлороводорода. В данном случае реализуется принцип организации рециркуляционных потоков по компонентам. Другой иллюстрацией данного принципа служит рецикл по 1,2-дихлорэтану, охватывающий аппараты 16-21 технологической схемы. Этот поток обеспечивает полную конверсию 1,2-дихлорэтана на стадии термического пиролиза и используется из-за того, что конверсия за один проход на этой стадии не превышает 48—50 %. Технология базируется на использовании дешевого и доступного этилена и хлора. Обладает высокой эффективностью в целом, хотя отдельные ее составляющие различаются по этому показателю. Например, хлорирование этилена обладает более высокой селективностью по сравнению с оксихлорированием и тем более с термическим пиролизом. Стадии оксихлорирования и хлорирования имеют высокие конверсии за один проход. Рециркуляция части реакционных газов на стадии оксихлорирования связана в основном с необходимостью обеспечения газодинамического и концентрационного режимов аппарата с кипящим слоем. Более того, в настоящее время доказано, что введение в исходные реагенты продуктов полного окисления дает возможность повысить селективность оксихлорирования. Эффективное использование тепла (принципы разработки процессов с низким энергопотреблением полноты использования энергии системы) в данной технологии достигается не только за счет ее утилизации в подсистеме ректификационного разделения, но и за счет обеспечения теплообмена между экзотермичными (хлорирование, оксих- - лорирование) и эндотермичными (пиролиз) стадиями процесса. Принцип полноты выделения продуктов из реакционной смеси используется достаточно полно, поскольку как целевой продукт, так и 1,2-дихлорэтан, направляемый на пиролиз, должны иметь высокую чистоту. В рассматриваемой технологии используется принцип минимального расходования воды, так как в ней практически отсутствуют промывные скрубберы, а хлороводород выделяют в ректификационной колонне при повышенном давлении. Использование для хлорирования этилена совмещенного процессапозволяет по сравнению с традиционными реакторами наиболее интенсивно применять низкопотенциальное тепло хлорирования для предварительного фракционирования продуктов реакции (снижение энергозатрат на выделение 1,2-дихлорэтана на 50-70 %). Кроме того, снижается почти в три раза выход высококипящих полихлоридов. Важной составляющей технологии является реализация принципа полноты использования газовых потоков и очистки газовых выбросов.Это связано с высокой токсичностью хлора и его соединений. В первую очередь технология обеспечивает утилизацию хлороводорода за счет реакции оксихлорирования этилена. Реакционные аппараты снабжены не только водяными, но и рассольными конденсаторами, которые дают возможность снизить выбросы хлорорганических продуктов в атмосферу за счет более высокой степени их конденсации при пониженных температурах. Выделение хлороводорода из реакционной массы пиролиза проводится ректификацией, что дает возможность непосредственно организовать его рецикл на стадию оксихлорирования, избежать процессов абсорбции его водой и, соответственно, кислотных и солевых стоков. Наконец, технология позволяет создавать линии большой единичной мощности. Реакционные подсистемы оксихлорирования и пиролиза и используемые в них реакционные аппараты дают возможность их проектирования на любую требуемую производительность. Реализация этого принципа для стадии хлорирования может быть осуществлена за счет применения параллельно работающих жидкофазных хлораторов, так чтобы вся технологическая цепочка представляла собой линию большой единичной мощности.[8]
Теоретический расход основного сырья, кг на 1т готового продукта: Этилен……………………………………………………………..……..448 Хлор…………………………………………………………..………….568
Побочные продукты и методы их утилизации Кубовые остатки после ректификации 1,2-дихлорэтана и винилхлорида представляют собой в основном смесь полихлоридов этана и этилена и смолистые вещества. На 1т винилхлорида в процессе гидрохлорирования ацетилена получается 20 кг побочных продуктов, в комбинированном процессе из ацетилена и этилена- 80кг, в сбалансированном процессе 50-110кг. Побочные продукты после осветления можно использовать частично для переработки в три- и перхлорэтилен, частично в четыреххлористый углерод. Вторичные кубовые остатки(10-20 %) сжигаются, при этом получается хлористый водород, который можно использовать для оксихлорирования этилена или гидрохлорирования ацетилена.
Примеси в техническом продукте Ацетилен, ацетальдегид, 1,1-дихлорэтан,1,2- дихлорэтан, бутадиен-1,3.
Методы анализа технического продукта В качестве основного метода анализа используется газожидкостная хромотография. Анализ ведется с использованием двух колонок, вторая колонка служит для определения 1,2- дихлорэтана и хлоропрена. Транспортирование и хранение Винилхлорид транспортируют и хранят в сжиженном состоянии под давлением собственных паров. Для длительного транспортирования и хранения винилхлорид стабилизируют добавкой фенола или гидрохинона. Заливают винилхлорид в специально оборудованные стальные железнодорожные цистерны, специальные стальные контейнеры емкостью 400 и 800л и стальные автоцистерны. Железнодорожные цистерны, автоцистерны и контейнеры должны быть рассчитаны на рабочее давление не менее 0,91 МПа.[6] Винилхлорид хранят в специальных стальных емкостях, а специальные контейнеры с винилхлоридом в крытых складских неотапливаемых помещениях. Условия хранения винилхлорида должны отвечать требованиям по хранению сжиженных горючих газов.
Date: 2016-02-19; view: 7643; Нарушение авторских прав |