Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Психофизиология слухового и вестибулярного анализаторов
С помощью слухового анализатора человек ориентируется в звуковых сигналах окружающей среды, формирует соответствующие поведенческие реакции, например оборонительные или пищедобывательные. Способность восприятия человеком разговорной и вокальной речи, музыкальных произведений делает слуховой анализатор необходимым компонентом средств общения, познания, приспособления. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры мозга через ряд последовательных отделов, которых особенно много в слуховой системе. Структура и функции наружного и среднего уха Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющей наружное ухо от барабанной полости, или среднего уха. Это тонкая перегородка, которая колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход. В среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Благодаря особенностям гео-метрии слуховых косточек эти колебания передаются уменьшенными в амплитуде, но увеличенными в силе. Именно поэтому даже слабые звуковые волны способны привести к колебаниям жидкости в улитке. Структура и функции внутреннего уха Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, который по всей длине разделен вестибулярной и основной мембранами на три хода: верхний, средний и нижний. Полость среднего канала не сообщается с полостью других каналов и заполнена эндолимфой, а верхний и нижний каналы сообщаются друг с другом и заполнены перилимфой. Внутри среднего канала улитки на основной мембране расположен спиральный (кортиев) орган, содержащий рецепторные клетки, которые трансформируют механические колебания в электрические потенциалы. Колебания мембраны овального окна вызывают колебания перилимфы в верхнем и нижнем каналах, кроме того, начинает колебаться и основная мембрана. На ней расположены два вида рецепторных волосковых клеток: внутренние и наружные. Механизмы слуховой рецепции. При колебаниях основной мембраны длинные волоски рецепторных клеток касаются текторинальной мембраны и несколько наклоняются. Это приводит к натяжению тончайших нитей, которые открывают ионные каналы в мембране рецептора. Пресинаптическое окончание волосковой клетки деполяризуется, что приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на пост-синаптическую мембрану афферентного волокна, медиатор вызывает в нем генерацию возбуждающего постсинаптического потенциала и импульсов, которые распространяются в нервные центры. Передача в мозг акустической информации. Сигналы от волосковых клеток поступают в мозг по 32 000 афферентных н. волокон, входящих в состав кохлеарной ветви восьмого черепно-мозгового нерва. Они являются дендритами ганглиозных н. клеток спирального ганглия. По волокнам слухового нерва даже в тишине следуют спонтанные импульсы с частотой до 100 имп./с. При звуковом раздражении частота импульсации в волокнах увеличивается и остается повышенной в течение всего периода, когда действует звук. Степень учащения разрядов различна у разных волокон и связана с интенсивностью и частотой звукового воздействия. В центральных отделах слуховой системы много нейронов, возбуждение которых длится в течение всего периода действия звука, а в слуховой коре разряды ряда нейронов длятся десятки секунд после его прекращения. Анализ частоты звука (высоты тона) При действии звуков разной частоты возбуждаются разные рецепторные клетки кортиева органа. В улитке сочетаются два типа кодирования высоты звука: пространственный и временной. Пространственное кодирование основано на определенном расположении возбужденных рецепторов на основной мембране. При действии низких и средних тонов кроме пространственного осуществляется и временное кодирование: частота следования импульсов в волокнах слухового нерва повторяет частоту звуковых колебаний. Нейроны всех уровней слуховой системы настроены на определенную частоту и интенсивность звука. Для каждого нейрона может быть найдена оптимальная частота звука, на которую порог его реакции минимален. Частотно-пороговые кривые раз-ных клеток не совпадают, в совокупности перекрывая весь частотный диапазон слышимых звуков, что обеспечивает их полноценное восприятие. Анализ интенсивности звука. Сила звука кодируется частотой им-пульсации и числом возбужденных нейронов. При слабом стимуле в реакцию вовлекается лишь небольшое количество наиболее чувствительных нейронов, а при усилении звука в реакции участвует все большее количество дополнительных нейронов с более высокими порогами. Слуховые ощущения Тональность (частота) звука. Человек воспринимает звуковые коле-бания с частотой от 16 до 20 000 Гц. Этот диапазон соответствует 10 – 11 октавам. Верхняя граница частоты воспринимаемых звуков зависит от возраста: она постепенно понижается (в старости часто не слышат высоких тонов). Различение частоты звука характеризуется тем минимальным различием по частоте двух близких звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1-2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения. Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютным порогом слуховой чувствительности. Пороги слышимости сильно зависят от частоты звука. В области частот от 1000 до 4000 Гц слух человека максимально чувствителен. В этих пределах слышен звук, имеющий ничтожную энергию. При звуках ниже 1000 и выше 4000 Гц чувствительность резко уменьшается: например, при 20 и при 20 000 Гц пороговая энергия звука в 1 млн раз выше. При усилении звука можно дойти до возникновения неприятного ощущения давления и даже боли в ухе. Звуки такой силы характеризуют верхний предел слышимости и ограничивают область нормального слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых рас-пределяются звуки речи. Громкость звука. Кажущуюся громкость звука следует отличать от его физической силы. Ощущение громкости не идет строго параллельно нарастанию интенсивности звучания. Адаптация. Если на ухо долго действует тот или иной звук, то чув-ствительность к нему падает. Степень этого снижения чувствительности (адаптации) зависит от длительности, силы звука и его частоты. Участие в слуховой адаптации нейронных механизмов типа латерального и возвратного торможения несомненно. Известно также, что сокращения мышц среднего уха могут изменять энергию сигнала, передающуюся на улитку. Бинауральный слух. Человек и животные обладают пространствен-ным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью порядка 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука нахо-дится в стороне от средней линии головы, то звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра. Вестибулярная система регулирует равновесие и ориентацию человека в пространстве. Эта система очень чувствительна к линейным ускорениям и к угловым вращениям. Периферический отдел вестибулярной системы (органы гравитации и равновесия, вестибулярный аппарат) расположен в височной кости и состоит из двух статолитовых (отолитовых) органов — утрикулус (овальный мешочек) и саккулус (круглый мешочек) и трех взаимно перпендикулярных полукружных каналов - горизонтального и вертикальных переднего и заднего. Каждый канал имеет расширение - ампулу. Комплекс утрикулус, саккулус и полукружные каналы называют перепончатым лабиринтом, который заполнен эндолимфой, сообщающейся с эндолимфой улитки, и окружен перилимфой, связанной с перилимфой органа слуха. Статолитовые органы воспринимают линейные ускорения, а их адек-ватным стимулом является сила тяжести. Сенсорный эпителий представлен рецепторными волосковыми, а также опорными клетками. Волоски (цилии) рецепторных клеток обращены в просвет перепончатого лабиринта. Они состоят из подвижных длинных волосков (киноцилий) и коротких менее подвижных, а также многочисленных стереоцилий (порядка 60 на клетке). Вестибулярные афферентные нервные волокна подходят к основанию рецептора и имеют постоянную спонтанную активность (импульсация без воздействия раздражителя). Волоски рецепторных клеток мешочков погружены в желатинообразную отолитовую мембрану, содержащую мелкие, но тяжелые кристаллы карбоната кальция (отолиты). При прямом положении тела и головы утрикулус находится в горизонтальном, а саккулус - в вертикальном положении. Наклон головы изменяет на некоторый угол положение утрикулуса и саккулуса, смещает мембрану относительно сенсорного эпителия и сгибает цилии. Смещение стереоцилий по направлению к киноцилий усиливает импульсную активность афферентного волокна, а смещение в противоположную сторону от киноцилий снижает частоту спонтанного разряда афферентного волокна. Рецепторы утрикулуса более чувствительны к изменениям положения головы и тела, рецепторы саккулуса — к вибрациям в диапазоне частот до 2000 Гц. Рецепторы полукружных каналов реагируют на угловые ускорения, т. е. на повороты головы и туловища вокруг вертикальной оси, на наклоны головы вперед, назад, влево и вправо. Каждый канал имеет расширение (ампулу), содержащее желатинооб-раз-ный выступ - купулу, выступающий в эндолимфу. В вещество купулы погружены цилии волосковых рецепторных клеток. Купула и эндолимфа имеют одинаковый удельный вес. Поэтому при повороте головы эндолимфа сохраняет прежнее положение, а свободный конец купулы отклоняется в направлении, противоположном повороту, и сгибает цилии волосковых клеток. Это смещение или сгибание цилий является адекватным стимулом для рецепторов полукружных каналов. Рецепторный потенциал волосковых клеток передается к нервным окончаниям (дендритам) биполярных клеток вестибулярного ганглия с помощью медиатора ацетилхолина. Центральное представительство вестибулярной системы (вестибуло-рецеп-торов). Возбуждение от рецепторов передается по терминальным дендритным волокнам биполярных клеток вестибулярного ганглия к вестибулярным ядрам в продолговатом мозге. От вестибулярных ядер аксоны направляются к мозжечку, ядрам глазодвигательных мышц, вестибулярным ядрам противоположной стороны, к мотонейронам шейного отдела спинного мозга, по вестибулоспинальному тракту - к мотонейронам мышц-разгибателей, а также к ретикулярной формации, гипоталамусу и таламическим ядрам. Функциональное значение этих связей - автоматический контроль (без участия сознания) равновесия тела, поддерживаемого врожденными рефлексами. От зон таламуса (дорзомедиальная часть вентрального по-стлатерального ядра) сигналы о положении головы и тела поступают к задней постцентральной извилине коры большого мозга. Таламокортикальная проекция обеспечивает сознательный анализ положения тела в пространстве и восприятие перемещений (скорость, ориентация и т. д.). Кроме того, вестибулярная система представлена также в моторной коре. Афферентация сюда поступает через вестибуло-мозжечково-таламический путь, который переключается в медиальной части вентрального ядра таламуса. Этот опосредованный моз-жечковый путь поддерживает тонические реакции, связанные с оценкой позы и со схемой тела. Чувство равновесия формируется на основании восприятия информации о положении тела и головы в пространстве и схеме тела, которая в текущий момент строится мозгом на основе интеграции афферентной информации от органа равновесия и от проприорецепторов суставов и мышц в сочетании со зрительным контролем ориентировки человека в пространстве. Существенная роль в этом принадлежит врожденным рефлексам. Вестибулярные раздражения вызывают статические и статокинетиче-ские рефлексы. Статические рефлексы поддерживают равновесие при по-ложениях тела стоя и разных углах наклона. Они осуществляются с рецепторов отолитовых органов (утрикулус и саккулус). Статокинетические рефлексы регулируют тонус мышц во время движений (например, поворот тела при свободном падении) и обеспечиваются как статолитовыми органами, так и рецепторами полукружных каналов. Среди статокинетических рефлексов особое значение имеет вестибулярный нистагм (вестибуло-окуломоторная реакция) или серия ритмических движений глаз в сторону, противоположную вращению тела. Нистагм глаз поддерживает восприятие стабильной картины внешнего мира. Вестибулярная система играет важную функциональную роль в регуляции и контроле моторных вестибулоспинальных и вестибуловисцеральных реакций. Вестибулоспинальные реакции перераспределяют мышечный тонус и поддерживают равновесие через вестибуло- рубро- и ретикулоспинальные тракты на сегментарном уровне. Вестибулоспинальные реакции (быстрые, срочные) находятся под контролем мозжечка. Вестибуловисцеральные реакции выполняют структуры продолговатого мозга, ствола и среднего мозга. Они проявляются в изменении работы желудочно-кишечного тракта (тошнота, рвота), сердечно-сосудистой системы (дизритмия), возникающих при на-грузках на вестибулярную систему (болезнь движения, морская болезнь). Date: 2016-01-20; view: 1603; Нарушение авторских прав |